Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 411-418    https://doi.org/10.1007/s11783-014-0663-z
RESEARCH ARTICLE
Ferrihydrite preparation and its application for removal of anionic dyes
Yongjuan WU1,3(),Wentao ZHANG2,Wenxiao YU1,Hui LIU3,Rufen CHEN3,Yu WEI3,*()
1. Huihua College of Hebei Normal University, Shijiazhuang 050091, China
2. Hebei Electric Power Research Institute, Shijiazhuang 050021, China
3. Key Laboratory of Inorganic Nanomaterials of Hebei Province, Hebei Normal University, Shijiazhuang 050024, China
 Download: PDF(525 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anionic dyes are hazardous and toxic to living organisms. For this study, ferrihydrite was prepared to test its removal capabilities on anionic dyes. A ferrihydrite particle prepared in neutral environmental conditions is sphere-like with a diameter of 2–4 nm and its total surface area is approximately 229 m2·g-1. In this paper, the effects of solution pH, competitive anions, and temperature on the adsorption of acid fuchsine onto ferrihydrite and the regeneration-reutilization of ferrihydrite were investigated in detail. The results indicate that ferrihydrite is an efficient sorbent for the removal of acid fuchsine at pH 4.0. The inhibitory effect of various competing anions on the present adsorption follows the precedence relationship: NO3-<Cl-<SO42-<H2PO4-. Adsorption isotherms of acid fuchsine on ferrihydrite fit the Langmuir equation well. The Gibbs free energy, enthalpy, and entropy data of adsorption indicate that this adsorption is a spontaneous, exothermic, and physical process. A ferrihydrite was regenerated and reused five times, still retaining its original adsorption capacity.

Keywords sorption      acid fuchsine      ferrihydrite      regeneration     
Corresponding Author(s): Yu WEI   
Online First Date: 21 February 2014    Issue Date: 30 April 2015
 Cite this article:   
Yongjuan WU,Wentao ZHANG,Wenxiao YU, et al. Ferrihydrite preparation and its application for removal of anionic dyes[J]. Front. Environ. Sci. Eng., 2015, 9(3): 411-418.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0663-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/411
Fig.1  HRTEM image (a); electron diffraction pattern (b); X-ray diffraction pattern (c); and N2 adsorption–desorption isotherms (d) of FH
Fig.2  Effect of pH on the AF adsorption (FH dose, 670.02 mg·L-1; T, 297.0 K; agitation rate, 300 r·min-1; contact time, 12 h; C0, 100.00 mg·L-1)
Fig.3  Effect of different anions on the adsorption of AF onto FH at pH 4.0
Fig.4  Isotherms for the adsorption of AF onto FH (a) and Plot of lnKθ vs. 1/T for estimation of thermodynamic parameters (b)
Langmuir equation Freundlich equation
T /K qθ(mg·g-1) bads R2 KF n R2
297 392.16 0.18 0.98 119.40 3.04 0.88
310 380.23 0.153 0.97 91.95 2.72 0.94
323 371.74 0.135 1.00 67.46 2.20 0.88
Tab.1  Isotherm constants for the adsorption of AF onto FH
T /K Kθ ΔGθ/(kJ·mol-1) ΔHθ/(kJ·mol-1) ΔSθ/(J·mol-1·K-1)
297 876. 31 -16.70 -68.17 -173.30
310 257.74 -14.42
323 95.22 -12.23
Tab.2  Thermodynamic parameters for the adsorption of AF onto FH evaluated at different temperatures
Fig.5  Sorption and desorbing kinetics of AF from FH (a) and percentages of AF removed and recovered during five adsorption-desorbing cycles (b) (FH dose, 670 mg·L-1; T, 297.0 K; agitation rate, 300 r·min-1; C0, 100 mg·L-1).
Fig.6  Infrared spectra of FH before and post-reaction: a, FH with adsorbed AF, unwashed; b, standard AF; c, FH only
1 Zhu H Y, Jiang R, Xiao L. Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3composites. Applied Clay Science, 2010, 48(3):522–526
https://doi.org/10.1016/j.clay.2010.02.003
2 Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280
https://doi.org/10.1080/01919510701459311
3 Wu Y, Chen R, Liu H, Wei Y, Wu D. Feasibility and mechanism of p-nitrophenol decomposition in aqueous dispersions of ferrihydrite and H2O2 under irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 87–99
https://doi.org/10.1007/s11144-013-0571-4
4 Matilainen A, Sillanp?? M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 2010, 80(4): 351–365
https://doi.org/10.1016/j.chemosphere.2010.04.067 pmid: 20494399
5 Grégorio C, Pierre-Marie B. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solution by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 2008, 33(4): 399–447
https://doi.org/10.1016/j.progpolymsci.2007.11.001
6 Cheung W H, Szeto Y S, McKay G. Enhancing the adsorption capacities of acid dyes by chitosan nanoparticles. Bioresource Technology, 2009, 100(3): 1143–1148
https://doi.org/10.1016/j.biortech.2008.07.071 pmid: 18829305
7 Karim A B, Mounir B, Hachkar M, Bakasse M, Yaacoubi A. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay. Journal of Hazardous Materials, 2009, 168(1): 304–309
https://doi.org/10.1016/j.jhazmat.2009.02.028 pmid: 19304386
8 Gecol H, Miakatsindila P, Ergican E, Hiibel S R. Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination, 2006, 197(13): 165–178
https://doi.org/10.1016/j.desal.2006.01.016
9 Tipping E. The adsorption of aquatic humic substances by iron oxides. Geochimica et CosmochimicaActa, 1981, 45(2): 191–199
https://doi.org/10.1016/0016-7037(81)90162-9
10 Borggaard O K. The influence of iron oxides on the surface area of soil. Journal of Soil Science, 1982, 33(3): 443–449
https://doi.org/10.1111/j.1365-2389.1982.tb01779.x
11 Kiem R, K?gel-Knabner I. Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions<6 μm. Organic Geochemistry, 2002, 33(12): 1699–1713
https://doi.org/10.1016/S0146-6380(02)00112-2
12 K?gel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P. Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 61–82
https://doi.org/10.1002/jpln.200700048
13 Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 2nd ed. New York: VCH-Weinheim, 2003, 238–265
14 Dold B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 2003, 18(10): 1531–1540
https://doi.org/10.1016/S0883-2927(03)00015-5
15 Jambor J L, Dutrizac J E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chemical Reviews, 1998, 98(7): 2549–2586
https://doi.org/10.1021/cr970105t pmid: 11848971
16 Babi? B M, Milonji? S K, Polovina M J, Kaludierovi? B V. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 1999, 37(3): 477–481
https://doi.org/10.1016/S0008-6223(98)00216-4
17 Drits V A, Sakharov B A, Salyn A L, Manceau A. Structural model for ferrihydrite. Clay Minerals, 1993, 28(2): 185–207
https://doi.org/10.1180/claymin.1993.028.2.02
18 Gregg S J, Sing K W. Adsorption, Surface Area and Porosity. 2nd ed. London: Academic Press, 1995, 31–36
19 Barnes A, Sapsford D J, Dey M, Williams K P. Heterogeneous Fe(II) oxidation and zeta potential. Journal of GeochemistyExploretion, 2009, 100(2–3): 192–198
20 Petrova B, Tsyntsarski B, Budinova T, Petrov N, Velasco L F, Ania C O. Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol. Chemical Engineering Journal, 2011, 172(1): 102–108
https://doi.org/10.1016/j.cej.2011.05.075
21 Shao H, Butler E C. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments. Chemosphere, 2007, 68(10): 1807–1813
https://doi.org/10.1016/j.chemosphere.2007.04.048 pmid: 17537483
22 Ni Z M, Xia S J, Wang L G, Xing F F, Pan G X. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. Journal of Colloid and Interface Science, 2007, 316(2): 284–291
https://doi.org/10.1016/j.jcis.2007.07.045 pmid: 17706237
23 Heidari A, Younesi H, Mehraban Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nanomesoporoussilica. Chemical Engineering Journal, 2009, 153(1–3): 70–79
24 Chen Y, Ding Y C. Kinetics and thermodynamics study on the adsorption of husk to cadmium ions in water. Journal of Anhui Agricultural Science, 2009, 37(11): 3190–3192(in Chinese)
25 Kara M, Yuzer H, Sabah E, Celik M S. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Research, 2003, 37(1): 224–232
https://doi.org/10.1016/S0043-1354(02)00265-8 pmid: 12465804
26 Yu T R, Beyme B, Richter J. Direct determination of potassium-calcium activity ratio in soils with two ion-selective electrodes. II. Interactions of potassium and calcium ions with soils. Journal of Plant Nutrition and Soil Science, 1989, 152(4): 359–365
https://doi.org/10.1002/jpln.19891520404
27 Wijnja H, Schulthess C P. Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. Journal of Colloid and Interface Science, 2000, 229(1): 286–297
https://doi.org/10.1006/jcis.2000.6960 pmid: 10942570
28 Parfitt R L, Atkinson R J, Smart R S. The mechanism of phosphate fixation by iron oxides. Soil Science Society of America Journal, 1975, 39(5): 837–841
https://doi.org/10.2136/sssaj1975.03615995003900050017x
29 James A D, James O L. Surface ionization and complexation at the oxide/water interface II. surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. Journal of Colloid and Interface Science, 1978, 67(1): 90–107
https://doi.org/10.1016/0021-9797(78)90217-5
30 James A D, James O L. Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions. Journal of Colloid and Interface Science, 1980, 74(1): 32–43
https://doi.org/10.1016/0021-9797(80)90168-X
31 Barriuso E, Laird D A, Koskinen W C, Dowdy R H. Atrazine desorption from smectites. Soil Science Society of America Journal, 1994, 58(6): 1632–1638
https://doi.org/10.2136/sssaj1994.03615995005800060008x
32 Lucía C, William C K, Pau Y Y. Sorption and desorption of imidacloprid and its metabolites in soils. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1468–1472
https://doi.org/10.1021/jf960514a
[1] Supplementary Material Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[7] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[8] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[9] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[10] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[11] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[12] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[13] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[14] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[15] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed