Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    0, Vol. Issue () : 631-649    https://doi.org/10.1007/s11783-014-0673-x
FEATURE ARTICLE
A review of atmospheric mercury emissions, pollution and control in China
Shuxiao WANG1,2,*(),Lei ZHANG1,Long WANG1,Qingru WU1,Fengyang WANG1,Jiming HAO1,2
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
 Download: PDF(583 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mercury, as a global pollutant, has significant impacts on the environment and human health. The current state of atmospheric mercury emissions, pollution and control in China is comprehensively reviewed in this paper. With about 500–800 t of anthropogenic mercury emissions, China contributes 25%–40% to the global mercury emissions. The dominant mercury emission sources in China are coal combustion, non-ferrous metal smelting, cement production and iron and steel production. The mercury emissions from natural sources in China are equivalent to the anthropogenic mercury emissions. The atmospheric mercury concentration in China is about 2–10 times the background level of North Hemisphere. The mercury deposition fluxes in remote areas in China are usually in the range of 10–50 μg∙m-2∙yr-1. To reduce mercury emissions, legislations have been enacted for power plants, non-ferrous metal smelters and waste incinerators. Currently mercury contented in the flue gas is mainly removed through existing air pollution control devices for sulfur dioxide, nitrogen oxides, and particles. Dedicated mercury control technologies are required in the future to further mitigate the mercury emissions in China.

Keywords atmospheric mercury      emissions      pollution      control      China     
Corresponding Author(s): Shuxiao WANG   
Issue Date: 20 June 2014
 Cite this article:   
Shuxiao WANG,Lei ZHANG,Long WANG, et al. A review of atmospheric mercury emissions, pollution and control in China[J]. Front.Environ.Sci.Eng., 0, (): 631-649.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0673-x
https://academic.hep.com.cn/fese/EN/Y0/V/I/631
inventory yearsource typeamount/tuncertaintyReference
1999anthropogenic sources536±44%Streets et al. [11]
2000anthropogenic sources605-Pacyna et al. [12]
2003a)anthropogenic sources696±44%Wu et al. [10]
2005anthropogenic sources825±40%Pacyna et al. [13]
2007anthropogenic sources609±30%b)Pirrone et al. [15]
1994coal combustion296-Feng and Hong [16]
1995coal combustion214-Wang et al. [17]
2000coal combustion162c)220c)-Jiang et al. [18]
2007d)coal combustion306-Tian et al. [19]
2010coal combustion254( - 34%, + 44%)Zhang [20]
2003e)non-coal sources393Wang et al. [21]
2005non-ferrous metal smelting83.2Hylander and Herbert [22]
2006f)zinc smelting104.2Li et al. [23]
2006zinc smelting107.7Yin et al. [24]
2010g)non-ferrous metal smelting72.5±85%Wu et al. [25]
Tab.1  Studies on the atmospheric mercury emissions from anthropogenic sources in China
ProvinceZhanget al.[37]Zhenget al.[33]Renet al.[32]Streetset al.[11]USGS[31]Huang& Yang[29]Wanget al.[27]
Anhui0.20(9)0.210.46(50)0.260.19(11)0.260.22
Beijing0.340.10(1)0.440.55(1)0.34
Chongqing0.41(5)0.64(12)0.15(7)
Fujian0.080.07(3)
Gansu0.18(2)1.35(1)0.050.05(5)
Guangdong0.10(1)0.150.06(2)
Guangxi0.300.35(5)
Guizhou0.21(30)1.140.70(133)0.520.20(16)0.52
Hainan0.15
Hebei0.17(9)0.460.16(33)0.140.14(15)0.800.13
Heilongjiang0.03(10)0.130.12(14)0.090.06(10)0.140.12
Henan0.14(10)0.170.14(115)0.250.21(27)0.170.30
Hubei0.23(1)0.160.16(3)
Hunan0.070.08(14)0.100.14(10)0.07
Inner Mongolia0.18(30)0.160.17(14)0.220.16(16)0.020.28
Jiangsu0.18(5)0.090.18(10)0.160.35(6)0.09
Jiangxi0.160.13(4)0.220.27(7)0.16
Jilin0.340.34(2)0.200.07(5)0.33
Liaoning0.10(10)0.170.14(16)0.170.19(9)0.130.20
Ningxia0.28(19)0.200.21(4)
Qinghai0.31(4)0.040.04(1)
Shaanxi0.25(17)0.640.30(3)0.110.14(11)0.080.16
Shandong0.16(14)0.280.18(11)0.180.13(19)0.210.17
Shanghai
Shanxi0.080.17(79)0.160.15(88)0.200.22
Sichuan0.34(4)0.180.35(14)0.140.09(11)
Tianjin0.18
Xinjiang0.02(12)0.030.09(6)0.020.03(6)0.03
Xizang
Yunnan0.08(10)0.300.32(56)0.290.14(7)0.34
Zhejiang0.75(2)0.35
National0.17(177)0.190.33(619)0.190.16(305)0.150.22
Tab.2  Mercury content of raw coal in China by province/autonomous/municipalities (mg∙kg-1)
BituminousAnthracitelignitesubbituminous
PC+ ESP29(42)22(4)38(6)27(11)
PC+ ESP+ WFGD63(14)81(1)65(1)50(3)
PC+ FF66(8)73(2)
PC+ WS12(1)33(1)
PC+ SCR+ ESP+ WFGD69(4)
PC+ FF+ WFGD90(2)
PC+ SDA+ FF99(1)66(1)13(1)
PC+ SDA+ ESP70(1)
PC+ ESP+ CFB-FGD+ FF68(1)
PC+ SCR+ SDA+ FF98(2)
PC+ NID+ ESP90(1)
PC+ SNCR+ ESP83(1)
CFB+ ESP99(1)61(2)
CFB+ FF100(2)59(1)
CFB+ SNCR+ FF89(1)79(1)
SF+ WS16(4)59(1)
SF+ FF+ WFGD77(1)
BB+ WS19(1)
Tab.3  Mercury removal efficiencies of air pollution control devices (APCDs) in coal-fired power plants (%)
provinceZincleadcopper
Wu et al. [25]Yin et al. [24]Song et al. [65]Wu et al. [25]Wu et al. [25]
Anhui4.10(1)4.10(1)4.10(1)14.66(2)0.34(4)
Chongqing114.91(1)
Fujian0.54(11)0.54(4)0.52(10)12.63(4)
Gansu499.91(9)132.57(6)499.91(9)10.77(3)2.86(4)
Guangdong72.16(3)6.21(4)85.96(3)43.75(3)0.05(1)
Guangxi9.34(9)9.09(7)2.87(4)10.13(12)0.62(3)
Guizhou2.13(1)
Hebei0.39(1)
Heilongjiang7(1)25.67(1)
Henan4.96(4)13.54(1)7.68(3)2.25(7)
Hubei0.76(1)6.86(1)0.99(6)
Hunan4.72(26)3.17(9)3.74(12)1.31(11)
Inner Mongolia2.16(6)4.22(2)2.28(5)62.21(4)1.84(2)
Jiangsu13.29(2)1.64(2)13.29(2)18.61(3)0.06(1)
Jiangxi1.47(10)1.55(5)1.88(9)19.51(1)4.66(7)
Jilin10.00(1)55.58(2)
Liaoning43.17(4)61.04(6)
Qinghai27.79(2)0.6(3)1.77(1)
Shaanxi240.77(12)50.31(2)233.07(10)45.14(3)
Shandong1.55(1)4.92(1)1.5(1)
Shanghai
Shanxi52.17(1)0.14(3)
Sichuan45.55(10)15.13(4)20.71(3)26.46(5)2.15(3)
Xinjiang16.86(3)4.25(5)6.86(2)2.02(7)
Xizang0.23(1)0.23(1)0.02(1)
Yunnan10.98(6)4.51(7)11.82(5)21.54(3)13.68(12)
Zhejiang0.88(5)14.51(3)1.17(3)20.96(5)
national9.74(118)7.34(82)4.35(73)10.29(83)2.87(55)
Tab.4  Mercury content of non-ferrous metal concentrates in China by province/autonomous/municipalities (mg∙kg-1)
Fig.1  Gridded natural emissions from the Asian domain in January, April, July and October, 2005
locationtypeTGM/(ng∙m-3)PBM/(pg∙m-3)RGM/(pg∙m-3)reference
Guiyangurban8.4Feng et al. [86]
Changchunurban18.4276Fang et al. [88]
Beijingurban7.91180Wang et al. [89]
Guangzhouurban13.5368Wang et al. [89]
Chongqingurban6.7Yang et al. [90]
Guiyangurban9.736835.7Fu et al. [87]
Shanghaiurban2.7Friedli et al. [91]
Ningbourban3.8Nguyen et al. [92]
Nanjingurban7.9Zhu et al. [93]
Changchunrural11.7109Fang et al. [88]
Yangtze River Deltarural5.4Wang et al. [89]
Miyun, Beijingrural3.2988.9Zhang et al., unpublished
Chongming, Shanghairural2.7228.0Dou [107]
Mt. Changbairmote3.67765Wan et al. [96,97]
Mt. Changbairemote1.6Fu et al. [98]
Mt. Gonggaremote4.0316.2Fu et al. [94,95]
Mt. Leigongremote2.8Fu et al. [99]
South China Searemote2.6Fu et al. [100]
Mt. Waliguanremote2.0197.4Fu et al. [101]
Chengshantou, Weihairemote2.3Ci et al. [102]
Yellow Searemote2.6Ci et al. [103]
Pearl River Deltaremote2.9Li et al. [104]
Shangri-Laremote2.6448.2Zhang [105]
Tab.5  Summary of atmospheric mercury monitoring studies in China
locationlocation typedeposition typeconcentration /(ng∙L-1)deposition flux /(μg∙m-2∙yr-1)reference
Shenchong, Guizhoupollutedprecipitation50329.1Dai et al. [111]
Shenchong, Guizhoupolluteddry deposition379Dai et al. [111]
Dashuixi, Guizhoupollutedprecipitation81468.8Dai et al. [111]
Dashuixi, Guizhoupolluteddry deposition2614Dai et al. [111]
Supeng, Guizhoupollutedprecipitation7490593Dai et al. [111]
Supeng, Guizhoupolluteddry deposition6178Dai et al. [111]
Changchunurbanprecipitation345152Fang et al. [88]
Changchunurbandry deposition166Fang et al. [88]
Changchunruralprecipitation13963.7Fang et al. [88]
Changchunruraldry deposition98.1Fang et al. [88]
Wujiang, Guizhoururalprecipitation36.034.7Guo et al. [112]
Tieshanping, Chongqingruralprecipitation55.367.3Wang et al. [108]
Tieshanping, Chongqingruralthroughfall98.9140Wang et al. [108]
Tieshanping, Chongqingrurallitterfall105221Wang et al. [108]
Luchongguan, Guizhoururalthroughfall83.651.1Wang et al. [108]
Mt. Gonggaremoteprecipitation9.99.1Fu et al. [95]
Mt. Changbairemoteprecipitation13.48.4Wan et al. [97]
Mt. Leigongremoteprecipitation19.522.4Wang et al. [108]
Mt. Leigongremotethroughfall54.246.4Wang et al. [108]
Mt. Leigongremotelitterfall13578.0Wang et al. [108]
Mt. Leigongremoteprecipitation4.06.1Fu et al. [99]
Mt. Leigongremotethroughfall8.910.5Fu et al. [99]
Mt. Leigongremotelitterfall9139.5Fu et al. [99]
Mt. Gonggaremoteprecipitation14.326.1Fu et al. [109]
Mt. Gonggaremotethroughfall40.457.0Fu et al. [109]
Mt. Gonggaremotelitterfall35.735.5Fu et al. [109]
Nam Co, Tibetremoteprecipitation4.81.75Huang et al. [110]
Tab.6  Summary of atmospheric mercury deposition fluxes in China
ChinaEUUS
Hgnew and existing plants0.030.03 (A German standard only)new: 0.001 (bituminous, gangue), 0.005 (lignite)
existing: 0.002 (bituminous, gangue), 0.006 (lignite)
Particlenew and existing plants3050, with an exception of 100 for low quality coal (eg lignite)22.5
SO2new plants100200160 (built after 2005)
existing plants (28 provinces)200400160 (built between 1997 and 2005)
existing plants (4 provinces with high sulfur coal)400640 (built between 1978 and 1996)
NOxnew plants100500 until 12/31/2015, then 200117
existing Plants(defined in China as built 1/1/04-12/3/11)(defined in US as built after 2/28/05)100500 until 12/31/2015, then 200117
existing Plants(defined in China as built before 1/1/04)(defined in US as built before 2/28/05)200500 until 12/31/2015, then 200160 (built between 1997 and 2005)
Tab.7  China, EU, and US Coal-fired power plant standards
1 United Nations Environment Programme (UNEP). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva, Switzerland: UNEP Chemicals Branch, 2013
2 PirroneN, MasonR P. Hg Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models. Geneva. Switzerland: Springer, 2009
3 SprovieriF, PirroneN, EbinghausR, KockH, DommergueA. A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 2010, 10(17): 8245–8265
doi: 10.5194/acp-10-8245-2010
4 SchroederW H, MuntheJ. Atmospheric mercury–An overview. Atmospheric Environment, 1998, 32(5): 809–822
doi: 10.1016/S1352-2310(97)00293-8
5 CiZ J, ZhangX S, WangZ W. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts. Environmental Science and Technology, 2012, 46(11): 5636–5642
doi: 10.1021/es300137y pmid: 22493995
6 FuX W, FengX B, SommarJ, WangS F. A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012, 421-422: 73–81
doi: 10.1016/j.scitotenv.2011.09.089 pmid: 22134034
7 LindbergS E, BullockR, EbinghausR, EngstromD, FengX B, FitzgeraldW, PirroneN, PrestboE, SeigneurC. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 2007, 36(1): 19–32
doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2 pmid: 17408188
8 LynamM M, KeelerG J. Automated speciated mercury measurements in Michigan. Environmental Science and Technology, 2005, 39(23): 9253–9262
doi: 10.1021/es040458r pmid: 16382950
9 ObristD, TasE, PelegM, MatveevV, FaïnX, AsafD, LuriaM. Bromine-induced oxidation of mercury in the mid-latitude atmosphere. Nature Geoscience, 2011, 22(1): 22–26
doi: 10.1038/ngeo1018
10 WuY, WangS X, StreetsD G, HaoJ M, ChanM, JiangJ K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 2006, 40(17): 5312–5318
doi: 10.1021/es060406x pmid: 16999104
11 StreetsD G, HaoJ M, WuY, JiangJ K, ChanM, TianH Z, FengX B. Anthropogenic mercury emissions in China. Atmospheric Environment, 2005, 39(40): 7789–7806
doi: 10.1016/j.atmosenv.2005.08.029
12 PacynaE G, PacynaJ M, SteenhuisenF, WilsonS. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 2006, 22(40): 4048–4063
doi: 10.1016/j.atmosenv.2006.03.041
13 PacynaE G, PacynaJ M, SundsethK, MuntheJ, KindbomK, WilsonS, SteenhuisenF, MaxsonP. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 2010, 44(20): 2487–2499
doi: 10.1016/j.atmosenv.2009.06.009
14 Arctic Monitoring and Assessment Programme (AMAP) and United Nations Environment Programme. (UNEP). Technical Background Report to the Global Atmospheric Mercury Assessment. Geneva, Switzerland: UNEP, 2008
15 PirroneN, ChinirellaS, FengX B, FinkelmanR B, FriedliH R, LeanerJ, MasonR, MukherjeeA B, StracherG B, StreetsD G, TelmerK. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 2010, 10(13): 5951–5964
doi: 10.5194/acp-10-5951-2010
16 FengX B, HongY T. Estimation of mercury released to the air from coal combustion in China. Coal Mine Environment Protection, 1996, 10(3): 10–13
17 WangQ C, ShenW G, MaS W. The estimation of mercury emission fromcoal combustion in China. China Environmental Science, 1999, 19(4): 318–321
18 JiangJ K, HaoJ M, WuY, StreetsD G, DuanL, TianH Z. Development of mercury emission inventory from coal combustion in China. Environmental Sciences, 2005, 26(2): 34–39
pmid: 16004296
19 TianH Z, WangY, XueZ G, ChengK, QuY P, ChaiF H, HaoJ M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics, 2010, 10(23): 11905–11919
doi: 10.5194/acp-10-11905-2010
20 ZhangL. Emission characteristics and synergistic control strategies of atmospheric mercury from coal combustion in China. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2012
21 WangS X, LiuM, JiangJ K, HaoJ M, WuY, StreetsD G. Estimate the mercury emissions from non-coal sources in China. Environmental Sciences, 2006, 27(12): 2401–2406
pmid: 17304831
22 HylanderL D, HerbertR B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environmental Science and Technology, 2008, 42(16): 5971–5977
doi: 10.1021/es800495g pmid: 18767653
23 LiG H, FengX B, LiZ G, QiuG L, ShangL H, LiangP, WangD Y, YangY K. Mercury emission to atmosphere from primary Zn production in China. Science of the Total Environment, 2010, 408(20): 4607–4612
doi: 10.1016/j.scitotenv.2010.06.059 pmid: 20655573
24 YinR S, FengX B, LiZ G, ZhangQ, BiX W, LiG H, LiuJ L, ZhuJ J, WangJ X. Metallogeny and environmental impact of Hg in Zn deposits in China. Applied Geochemistry, 2012, 27(1): 151–160
doi: 10.1016/j.apgeochem.2011.09.027
25 WuQ R, WangS X, ZhangL, SongJ X, YangH, MengY. Update of mercury emissions from China’s primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12(22): 11153–11163
doi: 10.5194/acp-12-11153-2012
26 GuanD B, LiuZ, GengY, LindnerS, HubacekK. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 2012, 2: 672–675
27 WangQ, ShenW, MaZ. Estimation of mercury emission from coal combustion in China. Environmental Science and Technology, 2000, 34(13): 2711–2713
doi: 10.1021/es990774j
28 ZhangM Q, ZhuY C, DengR W. Evaluation of mercury emissions to the atmosphere from coal combustion, China. Ambio, 2002, 31(6): 482–484
pmid: 12436847
29 HuangW, YangY. Mercury in coal in China. Coal Geology of China, 2002, 14(5): 37–40
30 ZhangJ, RenD, XuD, ZhaoF. Mercury in coal and its effect on environment. Advances in Environmental Science, 1999, 7(3): 100–104
31 United States Geological Survey (USGS). Mercury Content in Coal Mines in China. 2004
32 RenD, ZhaoF, DaiS, ZhangJ, LuoK. Geochemistry of Trace Elements in Coal. Beijing: Science Press, 2006
33 ZhengL, LiuG, ChouC L. The distribution, occurrence and environmental effect of mercury in Chinese coals. Science of the Total Environment, 2007, 384(1–3): 374–383
doi: 10.1016/j.scitotenv.2007.05.037 pmid: 17599392
34 TianH Z, WangY, XueZ G, QuY P, ChaiF H, HaoJ M. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Science of the Total Environment, 2011, 409(16): 3078–3081
doi: 10.1016/j.scitotenv.2011.04.039 pmid: 21621816
35 TianH Z, WangY, ChengK, QuY P, HaoJ M, XueZ G, ChaiF H. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Journal of the Air and Waste Management Association, 2012, 62(5): 576–586
doi: 10.1080/10962247.2012.663733 pmid: 22696807
36 TianH Z, LuL, HaoJ M, GaoJ J, ChengK, LiuK Y, QiuP P, ZhuC Y. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy and Fuels, 2013, 27(2): 601–614
doi: 10.1021/ef3017305
37 ZhangL, WangS X, MengY, HaoJ M. Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science and Technology, 2012, 46(11): 6385–6392
doi: 10.1021/es300286n pmid: 22533359
38 ChenL, DuanY, ZhuoY, YangL, ZhangL, YangX, YaoQ, JiangY, XuX. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition. Fuel, 2007, 86(4): 603–610
doi: 10.1016/j.fuel.2006.07.030
39 ZhouJ. Emissions and Control of Mercury from Coal-Fired Utility Boilers in China. China Workshop on Mercury Control from Coal Combustion, Beijing, 2005
40 ZhouJ, WangG, LuoZ, CenK. An experimental study of mercury emissions from a 600 MW pulverized coal-fired boiler. Journal of Engineering for Thermal Energy and Power, 2006, 21(6): 569–572
41 ZhouJ, ZhangL, LuoZ, HuC. Study on mercury emission and its control for boiler of 300 MW unit. Thermal Power Generation, 2008, 37(4): 22–27
42 WangY, DuanY, YangL, JiangY. An analysis of the factors exercising an influence on the morphological transformation of mercury in the flue gas of a 600 MW coal-fired power plant. Journal of Engineering for Thermal Energy and Power, 2008, 23(4): 399–403
43 YangX, DuanY, JiangY, YangL. Research on mercury form distribution in flue gas and fly ash of coal-fired boiler. Coal Science and Technology, 2007, 35(12): 55–58
44 DuanY, CaoY, KellieS, LiuK, RileyJ T, PanW. In-situ measurement and distribution of flue gas mercury for a utility PC boiler system. Journal of Southeast University, 2005, 21(1): 53–57
45 WangY, DuanY, YangL, ZhaoC, ShenX, ZhangM, ZhuoY, ChenC. Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology, 2009, 90(5): 643–651
doi: 10.1016/j.fuproc.2008.10.013
46 WuC, DuanY, WangY, JiangY, WangQ, YangL. Characteristics of mercury emission and demercurization property of NID system of a 410 t/h pulverized coal fired boiler. Journal of Fuel Chemistry and Technology, 2008, 36(5): 540–544
47 ChenY, ChaiF, XueZ, LiuT, ChenY, TianC. Study on mercury emission factors for coal-fired power plants. Research of Environmental Sciences, 2006, 19(2): 49–52
48 GuoX, ZhengC, JiaX, LinZ, LiuY. Study on mercury speciation in pulverized coal-fired flue gas. Proceedings of the CSEE, 2004, 24(6): 185–188
49 TangS. The mercury species and emissions from coal combustion flue gas and landfill gas in Guiyang. Dissertation for the Doctoral Degree. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2004
50 GoodarziF. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals. Journal of Environmental Monitoring, 2004, 6(10): 792–798
doi: 10.1039/b401827c pmid: 15480492
51 HeB, CaoY, RomeroC E, BilirgenH, SarunacN, AgarwalH, PanW. Comparison and validation of OHM and SCEM measurements for a full-scale coal-fired power plant. Chemical Engineering Communications, 2007, 194(10–12): 1596–1607
doi: 10.1080/00986440701432268
52 KellieS, DuanY, CaoY, ChuP, MehtaA, CartyR, LiuK, PanW, RileyJ T. Mercury emissions from a 100-MW wall-fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method. Fuel Processing Technology, 2004, 85(6–7): 487–499
doi: 10.1016/j.fuproc.2003.11.004
53 LeeS J, SeoY C, JangH N, ParkK S, BaekJ I, AnH S, SongK C. Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmospheric Environment, 2006, 40(12): 2215–2224
doi: 10.1016/j.atmosenv.2005.12.013
54 Jun LeeS, SeoY C, JurngJ, HongJ H, ParkJ W, HyunJ E, Gyu LeeT. Mercury emissions from selected stationary combustion sources in Korea. Science of the Total Environment, 2004, 325(1–3): 155–161
doi: 10.1016/j.scitotenv.2003.12.002 pmid: 15144786
55 Otero-ReyJ R, López-VilariñoJ M, Moreda-PiñeiroJ, Alonso-RodríguezE, Muniategui-LorenzoS, López-MahíaP, Prada-RodríguezD. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Environmental Science and Technology, 2003, 37(22): 5262–5267
doi: 10.1021/es020949g pmid: 14655716
56 ShahP, StrezovV, NelsonP. Speciation of mercury in coal-fired power station flue gas. Energy and Fuels, 2010, 24(1): 205–212
doi: 10.1021/ef900557p
57 ItoS, YokoyamaT, AsakuraK. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of the Total Environment, 2006, 368(1): 397–402
doi: 10.1016/j.scitotenv.2005.09.044 pmid: 16225907
58 MeijR, te WinkelH. Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands. Science of the Total Environment, 2006, 368(1): 393–396
doi: 10.1016/j.scitotenv.2005.09.083 pmid: 16289297
59 ShahP, StrezovV, PrinceK, NelsonP F. Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 2008, 87(10–11): 1859–1869
doi: 10.1016/j.fuel.2007.12.001
60 YokoyamaT, AsakuraK, MatsudaH, ItoS, NodaN. Mercury emissions from a coal-fired power plant in Japan. Science of the Total Environment, 2000, 259(1–3): 97–103
doi: 10.1016/S0048-9697(00)00552-0 pmid: 11032139
61 KimJ H, PudasaineeD, YoonY S, SonS U, SeoY C. Studies on speciation changes and mass distribution of mercury in a bituminous coal-fired power plant by combining field data and chemical equilibrium calculation. Industrial and Engineering Chemistry Research, 2010, 49(11): 5197–5203
doi: 10.1021/ie901361q
62 ChengC M, HackP, ChuP, ChangY N, LinT Y, KoC S, ChiangP H, HeC C, LaiY M, PanW P. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems. Energy and Fuels, 2009, 23(10): 4805–4816
doi: 10.1021/ef900293u
63 Information Collection Request (ICR). Results from onsite measurements in USA. Washington, D C: 2010
64 WangS X, ZhangL, LiG H, WuY, HaoJ M, PirroneN, SprovieriF, AncoraM P. Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 2010, 10(3): 1183–1192
doi: 10.5194/acp-10-1183-2010
65 SongJ X, WangS X, LiG H. Spatial distribution of mercury content of zinc concentrates in China. Science Paper Online, 2010, 5(6): 472–475
66 WangS X, SongJ X, LiG H, WuY, ZhangL, WanQ, StreetsD G, ChinC K, HaoJ M. Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 2010, 158(10): 3347–3353
doi: 10.1016/j.envpol.2010.07.032 pmid: 20716469
67 ZhangL, WangS X, WuQ R, MengY, YangH, WangF Y, HaoJ M. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171: 109–117
doi: 10.1016/j.envpol.2012.07.036 pmid: 22892573
68 GunsonA J, VeigaM M. Mercury and artisanal mining in China. Environmental Practice, 2004, 6(2): 109–120
doi: 10.1017/S1466046604000225
69 SikkemaJ K, AllemanJ E, OngS K, WheelockT D. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review. Science of the Total Environment, 2011, 409(20): 4167–4178
doi: 10.1016/j.scitotenv.2011.05.064 pmid: 21783227
70 WonJ H, LeeT G. Estimation of total annual mercury emissions from cement manufacturing facilities in Korea. Atmospheric Environment, 2012, 62: 265–271
doi: 10.1016/j.atmosenv.2012.08.035
71 MlakarT L, HorvatM, VukT, StergaršekA, KotnikJ, TratnikJ, FajonV. Mercury species, mass flows and processes in a cement plant. Fuel, 2010, 89(8): 1936–1945
doi: 10.1016/j.fuel.2010.01.009
72 LiW J. Characterization of atmospheric mercury emissions from coal-fired power plant and cement plant. Dissertation for the Master Degree. Chongqing: Southwest University, 2011
73 ZhangL. Research on mercury emission measurement and estimate from combustion resources. Dissertation for the Master Degree. Hangzhou: Zhejiang University, 2007
74 United Nations Environment Programme (UNEP). Toolkit for Identification and Quantification of Mercury Releases. 2005
75 FukudaN, TakaokaM, DoumotoS, OshitaK, MorisawaS, MizunoT. Mercury emission and behavior in primary ferrous metal production. Atmospheric Environment, 2011, 45(22): 3685–3691
doi: 10.1016/j.atmosenv.2011.04.038
76 TianH Z, GaoJ J, LuL, ZhaoD, ChengK, QiuP P. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environmental Science and Technology, 2012, 46(18): 10364–10371
pmid: 22920612
77 MasonR P, FitzgeraldW F, MorelF M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 1994, 58(15): 3191–3198
doi: 10.1016/0016-7037(94)90046-9
78 FengX B, YanH Y, WangS F, QiuG L, TangS L, ShangL H, DaiQ J, HouY M. Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou, China. Atmospheric Environment, 2004, 38(28): 4721–4732
doi: 10.1016/j.atmosenv.2004.05.023
79 FengX B, WangS F, QiuG G, HeT R, LiG H, LiZ G, ShangL H. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China. J Geophys Res-Atmos, 2008, 113(D15): D15309
doi: 10.1029/2007JD009600
80 FengX B, WangS F, QiuG A, HouY M, TangS L. Total gaseous mercury emissions from soil in Guiyang, Guizhou, China. J Geophys Res-Atmos, 2005, 110(D14): D14306
doi: 10.1029/2004JD005643
81 ShettyS K, LinC J, StreetsD G, JangC. Model estimate of mercury emission from natural sources in East Asia. Atmospheric Environment, 2008, 42(37): 8674–8685
doi: 10.1016/j.atmosenv.2008.08.026
82 WuY, WangS X, StreetsD G, HaoJ M, ChanM, JiangJ K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 2006, 40(17): 5312–5318
doi: 10.1021/es060406x pmid: 16999104
83 PanL, ChaiT F, CarmichaelG R, TangY H, StreetsD, WooJ H, FriedliH R, RadkeL F. Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation. Atmospheric Environment, 2007, 41(13): 2804–2819
doi: 10.1016/j.atmosenv.2006.11.048
84 StrodeS A, JaegleL, JaffeD A, SwartzendruberP C, SelinN E, HolmesC, YantoscaR M. Trans-Pacific transport of mercury. J Geophys Res-Atmos, 2008, 113(D15): D15305
doi: 10.1029/2007JD009428
85 GborP K, WenD Y, MengF, YangF Q, ZhangB N, SloanJ J. Improved model for mercury emission, transport and deposition. Atmospheric Environment, 2006, 40(5): 973–983
doi: 10.1016/j.atmosenv.2005.10.040
86 FengX B, ShangL H, WangS F, TangS L, ZhengW. Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research, 2004, 109(D3): 3303
doi: 10.1029/2003JD004159
87 FuX W, FengX B, QiuG L, ShangL H, ZhangH. Speicated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 2011, 45(25): 4205–4212
doi: 10.1016/j.atmosenv.2011.05.012
88 FangF M, WangQ C, LiJ F. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of the Total Environment, 2004, 330(1–3): 159–170
doi: 10.1016/j.scitotenv.2004.04.006 pmid: 15325166
89 WangZ W, ChenZ S, DuanN, ZhangX S. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. Journal of Environmental Sciences (China), 2007, 19(2): 176–180
doi: 10.1016/S1001-0742(07)60028-X pmid: 17915725
90 YangY K, ChenH, WangD Y. Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 2009, 156(1–4): 479–489
doi: 10.1007/s10661-008-0499-8 pmid: 18696236
91 FriedliH R, ArellanoA F Jr, GengF, CaiC, PanL. Measurements of atmospheric mercury in Shanghai during September 2009. Atmospheric Chemistry and Physics, 2011, 11(8): 3781–3788
doi: 10.5194/acp-11-3781-2011
92 NguyenD L, KimJ Y, ShimS G, ZhangX S. Ground and shipboard measurements of atmospheric gaseous elemental mercury over the Yellow Sea region during 2007–2008. Atmospheric Environment, 2011, 45(1): 253–260
doi: 10.1016/j.atmosenv.2010.07.021
93 ZhuJ, WangT, TalbotR, MaoH, HallC B, YangX, FuC, ZhuangB, LiS, HanY, HuangX. Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China. Atmospheric Chemistry and Physics, 2012, 12(24): 12103–12118
doi: 10.5194/acp-12-12103-2012
94 FuX W, FengX B, ZhuW Z, WangS F, LuJ L. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 2008, 42(5): 970–979
doi: 10.1016/j.atmosenv.2007.10.018
95 FuX W, FengX B, ZhuW Z, ZhengW, WangS F, LuJ Y. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China. Applied Geochemistry, 2008, 23(3): 408–418
doi: 10.1016/j.apgeochem.2007.12.018
96 WanQ, FengX B, LuJ, ZhengW, SongX J, HanS J, XuH. Atmospheric mercury in Changbai Mountain area, northeastern China I.The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research, 2009, 109(3): 201–206
doi: 10.1016/j.envres.2008.12.001 pmid: 19185296
97 WanQ, FengX B, LuJ, ZhengW, SongX J, LiP, HanS J, XuH. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research, 2009, 109(6): 721–727
doi: 10.1016/j.envres.2009.05.006 pmid: 19524889
98 FuX W, FengX B, ShangL H, WangS F, ZhangH. Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt.Changbai area, Northeastern China. Atmospheric Chemistry and Physics, 2012, 12(9): 4215–4226
doi: 10.5194/acp-12-4215-2012
99 FuX W, FengX B, DongZ Q, YinR S, WangJ X, YangZ R, ZhangH. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 2010, 10(5): 2425–2437
doi: 10.5194/acp-10-2425-2010
100 FuX W, FengX B, ZhangG, XuW H, LiX D, YaoH, LiangP, LiJ, SommarJ, YinR S, LiuN. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research, 2010, 115(D6): 6303
doi: 10.1029/2009JD012958
101 FuX W, FengX B, LiangP, Deliger, ZhangH, JiJ, LiuP. Deliger, ZhangH, JiJ, LiuP. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 2012, 12(4): 1951–1964
doi: 10.5194/acp-12-1951-2012
102 CiZ J, ZhangX S, WangZ W, NiuZ C. Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site downwind of East China: Temporal variation and long-range transport. Atmospheric Environment, 2011, 45(15): 2480–2487
doi: 10.1016/j.atmosenv.2011.02.043
103 CiZ J, ZhangX S, WangZ W, NiuZ C, DiaoX Y, WangS W. Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics, 2011, 11(6): 2881–2892
doi: 10.5194/acp-11-2881-2011
104 LiZ, XiaC H, WangX M, XiaY R, XieZ Q. Total gaseous mercury in Pearl River Delta region, China during 2008 winter period. Atmospheric Environment, 2011, 45(4): 834–838
doi: 10.1016/j.atmosenv.2010.11.032
105 ZhangH. Concentrations of speciated atmospheric mercury a high-altitude background station in the Shangri-La area of Tibetan Plateau, China. In: Proceedings of 10th International Conference on Mercury as a Global Pollutant, Halifax, Canada, 2011
106 ZhangL, WangS X, WangL, HaoJ M. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources. Atmospheric Chemistry and Physics, 2013, 13: 10505–10516
doi: 10.5194/acpd-13-12177-2013
107 DouH Y. Characteristics of speciated atmospheric mercury concentrations at a rural site of Yangtze Delta, China. Dissertation for the Master Degree. Beijing: Tsinghua University, 2012
108 WangZ W, ZhangX S, XiaoJ S, ZhijiaC, YuP Z. Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environmental Pollution, 2009, 157(3): 801–808
doi: 10.1016/j.envpol.2008.11.018 pmid: 19121554
109 FuX W, FengX B, ZhuW Z, RothenbergS, YaoH, ZhangH. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 2010, 158(6): 2324–2333
doi: 10.1016/j.envpol.2010.01.032 pmid: 20199832
110 HuangJ, KangS C, ZhangQ G, YanH Y, GuoJ M, JenkinsM G, ZhangG S, WangK. Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes. Atmospheric Environment, 2012, 62: 540–550
doi: 10.1016/j.atmosenv.2012.09.003
111 DaiZ H, FengX B, SommarJ, LiP, FuX W. Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou Province, China. Atmospheric Chemistry and Physics, 2012, 12(14): 6207–6218
doi: 10.5194/acp-12-6207-2012
112 GuoY N, FengX B, LiZ G, HeT R, YanH Y, MengB, ZhangJ F, QiuG L. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmospheric Environment, 2008, 42(30): 7096–7103
doi: 10.1016/j.atmosenv.2008.06.006
113 WangbergI, MuntheJ, BergT, EbinghausR, KockH H, TemmeC, BieberE, SpainT G, StolkA. Trends in air concentration and deposition of mercury in the coastal environment of the North Sea Area. Atmospheric Environment, 2007, 41(12): 2612–2619
doi: 10.1016/j.atmosenv.2006.11.024
114 GraydonJ A, St LouisV L, HintelmannH, LindbergS E, SandilandsK A, RuddJ W M, KellyC A, HallB D, MowatL D. Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science and Technology, 2008, 42(22): 8345–8351
doi: 10.1021/es801056j pmid: 19068816
115 PrestboE M, GayD A. Wet deposition of mercury in the US and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmospheric Environment, 2009, 43(27): 4223–4233
doi: 10.1016/j.atmosenv.2009.05.028
116 CaldwellC A, SwartzendruberP, PrestboE. Concentration and dry deposition of mercury species in arid south central New Mexico (2001–2002). Environmental Science and Technology, 2006, 40(24): 7535–7540
doi: 10.1021/es0609957 pmid: 17256491
117 MarsikF J, KeelerG J, LandisM S. The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling. Atmospheric Environment, 2007, 41(1): 136–149
doi: 10.1016/j.atmosenv.2006.07.032
118 FengX B, LiG H, QiuG L. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang county, Guizhou, China–Part 1: Mercury emission from zinc smelting and its influences on the surface waters. Atmospheric Environment, 2004, 38(36): 6223–6230
doi: 10.1016/j.atmosenv.2004.07.020
119 ZhangZ, WangQ, ZhengD, ZhengN, LuX. Mercury distribution and bioaccumulation up the soil-plant-grasshopper-spider food chain in Huludao City, China. Journal of Environmental Sciences (China), 2010, 22(8): 1179–1183
doi: 10.1016/S1001-0742(09)60235-7 pmid: 21179955
120 LiZ, FengX, LiG, BiX, SunG, ZhuJ, QinH, WangJ. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province, China. Applied Geochemistry, 2011, 26(2): 160–166
doi: 10.1016/j.apgeochem.2010.11.014
121 ZhengN, LiuJ, WangQ, LiangZ. Mercury contamination due to zinc smelting and chlor-alkali production in NE China. Applied Geochemistry, 2011, 26(2): 188–193
doi: 10.1016/j.apgeochem.2010.11.018
122 YinX, YaoC, SongJ, LiZ, ZhangC, QianW, BiD, LiC, TengY, WuL, WanH, LuoY. Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: levels and contamination in topsoils. Environmental Pollution, 2009, 157(6): 1787–1793
doi: 10.1016/j.envpol.2009.02.018 pmid: 19304360
123 JaffeD, StrodeS. Sources, fate and transport of atmospheric mercury from Asia. Environmental Chemistry, 2008, 5(2): 121–126
doi: 10.1071/EN08010
124 SelinN E, JacobD J, YantoscaR M, StrodeS, JaegleL, SunderlandE M.Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycle, 2008, 22: GB2011
125 LinC J, PanL, StreetsD G, ShettyS K, JangC, FengX, ChuH W, HoT C. Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmospheric Chemistry and Physics, 2010, 10(4): 1853–1864
doi: 10.5194/acp-10-1853-2010
126 PanL, LinC J, CarmichaelG R, StreetsD G, TangY H, WooJ H, ShettyS K, ChuH W, HoT C, FriedliH R, FengX B. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 2010, 408(16): 3277–3291
doi: 10.1016/j.scitotenv.2010.04.039 pmid: 20483447
127 SeigneurC, VijayaraghavanK, LohmanK, KaramchandaniP, ScottC. Global source attribution for mercury deposition in the United States. Environmental Science & Technology, 2004, 38(2): 555–569
doi: 10.1021/es034109t pmid: 14750733
128 DurnfordD, DastoorA, Figueras-NietoD, RyjkovA. Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics, 2010, 10(13): 6063–6086
doi: 10.5194/acp-10-6063-2010
129 Ministry of Environmental Protection of China (MEP). Emission standard of air pollutants for thermal power plants (GB 13223–2011). Beijing, 2011
130 United States Environmental Protection Agency (US EPA). Database of information collected in the electric utility steam generating unit mercury emissions information collection effort. Research Triangle Park, NC, USA: US EPA, 2001
131 BrownT D, SmithD N, HargisR A, O’DowdJ W J, O’DowdW J. Mercury measurement and its control: what we know, have learned, and need to further investigate. Journal of the Air and Waste Management Association, 1999, 49(12): 1469–1473
doi: 10.1080/10473289.1999.10463975
132 Black & Veatch. Effective mercury reduction strategy for western coal/K-Fuel technology, 2003
133 KFx. Final Report of K-Fuel™ Test Burn Validates Initial Emissions Data. 2006
134 MillerC, FeeleyT, AljoeW, LaniB, SchroederK, KairiesC, McNemarA, JonesA, MurphyJ. Mercury capture and fate using wet FGD at coal-fired power plants. Pittsburgh, PA, USA: 2006
135 BustardJ, SjostromS, StarnsT, DurhamM. Full scale evaluation of mercury control technologies with PRB coals. Clean Air Technologies and Strategies Conference, Baltimore, MD, USA, 2005
136 VosteenB W, LindauL. Bromine based mercury abatement-promising results from further full scale testing. MEC3 Conference, Katowice, Poland, 2006
137 SlossL.Implications of emission legislation for existing coal-fired plants. 2009
138 ChuP. Effects of SCRs on mercury. Mercury Experts Conference, Glasgow, Scotland, 2004
139 WinbergS, WinthumJ, TsengS, LockeJ. Evaluation of mercury emissions from coal-fired facilities with SCR-FGD systems. DOE/NETL Mercury Control Technology R&D Program Review, Pittsburgh, PA, USA, 2004
140 GAO. Preliminary observations on the effectiveness and costs of mercury control technologies at coal-fired power plants. Washington, DC, USA: 2009
141 SrivastavaR K, JozewiczW. Flue gas desulfurization: the state of the art. Journal of the Air and Waste Management Association, 2001, 51(12): 1676–1688
doi: 10.1080/10473289.2001.10464387 pmid: 15666473
142 Modern Power Systems. Can Enviroscrub clean up in the multi-pollutant control business. 2002
143 McLarnonC R, JonesM D. Pilot testing and scale-up of a multipollutant control technology at FirstEnergy. PowerGen International Conference, Orlando, FL, USA, 2000
144 FerrellR.Controlling NOX emissions: a cooler alternative. 2000
145 AltmanR, BuckleyW, RayI. Multi-pollutant control with dry-wet hybrid ESP technology. Combined Utility Air Pollutant Control Symposium, Washington, DC, USA, 2003
146 ZhaoY. Study on air pollutant emission of coal-fired power plants in China and its environmental impacts. Dissertation for the Doctor Degree. Beijing: Tsinghua University, 2008
147 China Electricity Council (CEC). Annual Development Report of China’s Power Industry 2011. Beijing: China Market Press, 2011
148 China Electric Power Yearbook Editorial Committee. China Electric Power Yearbook. Beijing: China Electric Power Press, 2011
149 LeiY, ZhangQ, NielsenC, HeK. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment, 2011, 45(1): 147–154
doi: 10.1016/j.atmosenv.2010.09.034
150 WangS X, ZhangL, WuY, AncoraM P, ZhaoY, HaoJ M. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. Journal of the Air & Waste Management Association, 2010, 60(6): 722–730
doi: 10.3155/1047-3289.60.6.722 pmid: 20564998
151 WangS X, ZhangL, ZhaoB, MengY, HaoJ M. Mitigation potential of mercury emissions from coal-fired power plants in China. Energy and Fuels, 2012, 26(8): 4635–4642
doi: 10.1021/ef201990x
[1] Zhou Yang, Murui Zheng, Ze-Lin Yan, Hui Liu, Xiangyi Liu, Jie-Qi Jin, Jiagang Wu, Chun-Quan Ou. Magnitude and direction of temperature variability affect hospitalization for myocardial infarction and stroke: population-based evidence from Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024, 18(3): 27-.
[2] Lewei Zeng, Fengbin Wang, Shupei Xiao, Xuan Zheng, Xintong Li, Qiyuan Xie, Xiaoyang Yu, Cheng Huang, Qingyao Hu, Yan You, Ye Wu. Characterization and prediction of tailpipe ammonia emissions from in-use China 5/6 light-duty gasoline vehicles[J]. Front. Environ. Sci. Eng., 2024, 18(1): 6-.
[3] Jinbo Wang, Jiaping Wang, Wei Nie, Xuguang Chi, Dafeng Ge, Caijun Zhu, Lei Wang, Yuanyuan Li, Xin Huang, Ximeng Qi, Yuxuan Zhang, Tengyu Liu, Aijun Ding. Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region[J]. Front. Environ. Sci. Eng., 2023, 17(9): 114-.
[4] Hao Zheng, Jian Cheng, Hung Chak Ho, Baoli Zhu, Zhen Ding, Wencong Du, Xin Wang, Yang Yu, Juan Fei, Zhiwei Xu, Jinyi Zhou, Jie Yang. Evaluating the short-term effect of ambient temperature on non-fatal outdoor falls and road traffic injuries among children and adolescents in China: a time-stratified case-crossover study[J]. Front. Environ. Sci. Eng., 2023, 17(9): 105-.
[5] Hailong Yin, Yiyuan Lin, Huijin Zhang, Ruibin Wu, Zuxin Xu. Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm[J]. Front. Environ. Sci. Eng., 2023, 17(7): 85-.
[6] Yuhan Zhao, Xiaoping Kang, Xue Tian, Lulu Liu, Zemeng Zhao, Lili Luo, Lixin Tao, Xiangtong Liu, Xiaonan Wang, Xiuhua Guo, Juan Xia, Yanxia Luo. Long-term exposure to air pollution and cerebrovascular disease: findings from Beijing Health Management Cohort study[J]. Front. Environ. Sci. Eng., 2023, 17(7): 84-.
[7] Yang Xie, Hua Zhong, Zhixiong Weng, Xinbiao Guo, Satbyul Estella Kim, Shaowei Wu. PM2.5 concentration declining saves health expenditure in China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 90-.
[8] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[9] Tao Ya, Zhimin Wang, Junyu Liu, Minglu Zhang, Lili Zhang, Xiaojing Liu, Yuan Li, Xiaohui Wang. Responses of microbial interactions to elevated salinity in activated sludge microbial community[J]. Front. Environ. Sci. Eng., 2023, 17(5): 60-.
[10] Yujie Pan, Yalan Li, Hongxia Peng, Yiping Yang, Min Zeng, Yang Xie, Yao Lu, Hong Yuan. Relationship between groundwater cadmium and vicinity resident urine cadmium levels in the non-ferrous metal smelting area, China[J]. Front. Environ. Sci. Eng., 2023, 17(5): 56-.
[11] Qijun Zhang, Jiayuan Liu, Ning Wei, Congbo Song, Jianfei Peng, Lin Wu, Hongjun Mao. Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 62-.
[12] Zeou Dou, Maria Vitoria Bini Farias, Wensi Chen, Dongjing He, Yuhang Hu, Xing Xie. Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled fertilizer release[J]. Front. Environ. Sci. Eng., 2023, 17(5): 53-.
[13] Zhen Cheng, Xinghua Qiu, Xiaodi Shi, Xing Jiang, Tong Zhu. Discovery of emerging organic pollutants in the atmosphere through an omics approach[J]. Front. Environ. Sci. Eng., 2023, 17(4): 45-.
[14] Jianxun Yang, Qi Gao, Miaomiao Liu, John S. Ji, Jun Bi. Same stimuli, different responses: a pilot study assessing air pollution visibility impacts on emotional well-being in a controlled environment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 20-.
[15] Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed