Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 419-428    https://doi.org/10.1007/s11783-014-0674-9
RESEARCH ARTICLE
Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil
Junxing YANG1,2,Liqun WANG2,3,Jumei LI2,Dongpu WEI2,Shibao CHEN2,Qingjun GUO1,Yibing MA2,*()
1. Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. National Soil Fertility and Fertilizer Effects Long-term Monitoring Network, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3. The Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100037, China
 Download: PDF(281 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Screening of cost-effective soil amendments is important to develop “in situ” remediation techniques for cadmium (Cd) contaminated soils. In this study, different soil amendments, including red mud, a by-product of the alumina industry, and acid-treated, nano-treated by nano-particle milling, nano and acid-treated red muds, zeolite, corn straw, and rape straw, were evaluated to immobilize Cd in two added levels (2 and 5 mg Cd·kg-1 soil) in a calcareous soil by single and sequential extractions and by cucumber (Cucumis sativus L.) pot experiments. Results indicated that cruciferous rape straw significantly decreased the concentrations of water soluble, extractable Cd in soils, and Cd in cucumber plants, and it was more effective than gramineous corn straw. Also, red mud generally decreased the extractability and bioavailability of Cd added to calcareous soils more effectively than zeolite. Furthermore, the efficiency of red mud could be increased by the treatment of nano-particle milling due to the increase in specific surface area of red mud. It is potential to use rape straw and red mud as soil amendments to develop a cost-effective and efficient “in situ” remediation technology for Cd mildly contaminated calcareous soils.

Keywords red mud      rape straw      cadmium      immobilization      calcareous soil     
Corresponding Author(s): Yibing MA   
Online First Date: 18 March 2014    Issue Date: 30 April 2015
 Cite this article:   
Junxing YANG,Liqun WANG,Jumei LI, et al. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil[J]. Front. Environ. Sci. Eng., 2015, 9(3): 419-428.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0674-9
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/419
form/association Abbr. Step extraction method
water soluble WS 1 distilled water, 1:5, shaking 30 min
exchangeable EXC 2 1 mol·L-1 MgCl2, pH 7.0, shaking 1 h
EDTA-extractable EDTA 3 1% NaCaHEDTA in 1 mol·L-1 NH4OAc, pH 8.3, 1:10, shaking 2 h
easily reducible Mn ERMn 4 0.2% quinol in 1 mol·L-1 NH4OAc, pH 7.0, 1:10, shaking 1 h
carbonate CA 5 0.5 mol·L-1 NaOAc-0.5 mol·L-1 HOAc, pH 4.74, 1:10, soaking 15 hand shaking 3 h
organic matter OM 6 5 mL 30% H2O2, pH 4.74, digested twice at 85°C and extracted by 0.5 mol·L-1 NaOAc-0.5 mol·L-1 HOAc for 1 h
Fe and Al oxides FeOx 7 0.175 mol·L-1 (NH4)2C2O4 -0.100 mol·L-1 H2C2O4, pH 3.25, 1:10, soaking 15 h and shaking 2 h in daylight
residual forms RES 8 total minus sum of the extractable
Tab.1  Procedure for the sequential extraction of Cd from amended soils
Fig.1  Concentrations of NH4Ac extractable Cd (mg·kg-1) under the 2 (a) and 5 (b) mg·kg-1 Cd exposures as affected by different amendments added to soils after 1 month and 4 months. CK1 and CK2 indicated 2 and 5 mg·kg-1 Cd exposures, respectively. CS, corn straw; ZT, zeolite; RM, red mud; RMa, acid-treated RM; RMna, nano and acid-treated RM; RMn, nano-treated RM; RS, rape straw
Cd addition /(mg·kg-1 soil) amendments shoot Cd concentration/(mg·kg-1) shoot Cd uptake/(mg·plant-1) shoot yield/(g·plant-1)
2 CK 0.193±0.003 a 0.220±0.013 a 1.14±0.12 a
RM 0.143±0.009 cd 0.168±0.021 c 1.18±0.07 a
RMn 0.128±0.008 e 0.150±0.017 d 1.17±0.16 a
RMa 0.138±0.007 d 0.157±0.023 d 1.14±0.08 a
RMna 0.133±0.006 de 0.150±0.011 d 1.13±0.13 a
ZT 0.171±0.010 b 0.195±0.015 b 1.14±0.13 a
CS 0.154±0.005 c 0.183±0.026 bc 1.19±0.13 a
RS 0.127±0.004 e 0.154±0.018 d 1.21±0.11 a
5 CK 0.388±0.009a 0.419±0.034 a 1.08±0.09 a
RM 0.266±0.004 c 0.295±0.025 d 1.11±0.17a
RMn 0.212±0.014 e 0.244±0.029 f 1.15±0.09 a
RMa 0.242±0.005 d 0.286±0.014 de 1.18±0.13 a
RMna 0.237±0.009 d 0.268±0.019 e 1.13±0.09 a
ZT 0.309±0.010 b 0.362±0.031 b 1.17±0.20 a
CS 0.278±0.008 bc 0.317±0.029 c 1.14±0.08 a
RS 0.214±0.006 e 0.248±0.024 f 1.16±0.07 a
Tab.2  Shoot yield and concentrations and uptake of Cd in cucumber plants in response to different amendments under the 2 and 5 mg·kg-1 Cd exposures
Fig.2  Speciation of Cd in 2 (a) and 5 (b) mg·kg-1 Cd soils after treatment with various amendments. WS, water soluble; EXC, exchangeable; EDTA, EDTA-extractable; ERMn, easily reducible Mn; CA, carbonate; OM, organic matter; FeOx, Fe and Al oxides; RES, residual forms
Cd addition/(mg·kg-1 soil) amendments pH WS EXC EDTA ERMn CA OM FeOx RES
2 CK 8.11 0.009±0.002a 0.41±0.011a 0.51±0.020b 0.121±0.004a 0.120±0.006b 0.112±0.002b 0.306±0.005b 0.412±0.026b
RM 8.14 0.006±0.001bc 0.27±0.016bc 0.51±0.016b 0.125±0.010a 0.140±0.004a 0.111±0.003b 0.362±0.016a 0.476±0.008a
RMn 8.16 0.005±0.001c 0.25±0.006c 0.52±0.014b 0.122±0.003a 0.137±0.005a 0.110±0.007b 0.374±0.012a 0.482±0.022a
RMa 8.09 0.007±0.002b 0.29±0.009b 0.52±0.015b 0.122±0.007a 0.139±0.006a 0.102±0.004b 0.363±0.015a 0.457±0.018a
RMna 8.1 0.006±0.001bc 0.26±0.011bc 0.52±0.015b 0.122±0.017a 0.137±0.012a 0.110±0.005b 0.374±0.006a 0.471±0.021a
ZT 8.02 0.007±0.002b 0.30±0.015b 0.62±0.028a 0.113±0.009a 0.136±0.004a 0.106±0.003b 0.315±0.006b 0.403±0.023b
CS 8.08 0.007±0.002b 0.31±0.023b 0.63±0.022a 0.119±0.015a 0.124±0.012b 0.122±0.011a 0.300±0.026b 0.388±0.021b
RS 8.07 0.005±0.001c 0.24±0.026c 0.68±0.037a 0.114±0.016a 0.126±0.017b 0.129±0.009a 0.301±0.024b 0.405±0.032b
5 CK 8.1 0.014±0.003a 1.11±0.033a 1.22±0.042b 0.30±0.013a 0.27±0.011ab 0.37±0.016b 0.77±0.026a 0.95±0.025ab
RM 8.12 0.007±0.002c 0.88±0.026cd 1.26±0.028b 0.29±0.013a 0.29±0.015a 0.36±0.018b 0.81±0.011a 1.10±0.035a
RMn 8.14 0.006±0.001c 0.85±0.017cd 1.30±0.037b 0.30±0.017a 0.30±0.026a 0.34±0.020b 0.82±0.014a 1.08±0.034a
RMa 8.08 0.009±0.002b 0.87±0.019cd 1.30±0.036b 0.29±0.018a 0.28±0.013ab 0.36±0.011b 0.80±0.029a 1.09±0.059a
RMna 8.06 0.008±0.002bc 0.86±0.032cd 1.29±0.027b 0.29±0.016a 0.30±0.013a 0.34±0.012b 0.81±0.016a 1.10±0.033a
ZT 7.99 0.009±0.002b 0.91±0.021c 1.40±0.035a 0.29±0.021a 0.27±0.012ab 0.35±0.016b 0.78±0.023a 0.99±0.036ab
CS 8.03 0.009±0.002b 0.96±0.012bc 1.41±0.042a 0.26±0.018b 0.26±0.011b 0.49±0.027a 0.77±0.021a 0.84±0.025b
RS 8.05 0.006±0.001c 0.84±0.022d 1.46±0.036a 0.28±0.023ab 0.27±0.016ab 0.51±0.025a 0.78±0.034a 0.86±0.028b
Tab.3  Concentrations of Cd (mg·kg-1) in various fractions as affected by different amendments under the 2 and 5 mg·kg-1 Cd exposures
1 McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safe issues. Field Crops Research, 1999, 60(1–2): 143–163
2 Satarug S, Baker J R, Urbenjapol S, Haswell-Elkins M, Reilly P E B, Williams D J, Moore M R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 2003, 137(1–2): 65–83
pmid: 12505433
3 Hooda P S. Trace Elements in Soil. Chippenham: John Wiley and sons, 2010
4 Garau G, Castaldi P, Santona L, Deinan P, Melis P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 2007, 142(1–2): 47–57
5 Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 2011, 185(2–3): 1241–1248
pmid: 21051138
6 Liu Y J, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 2011, 163(1–2): 1–12
7 Lombi E, Zhao F J, Wieshammer G, Zhang G, McGrath S P. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118(3): 445–452
pmid: 12009143
8 Friesl W, Lombi E, Horak O, Wenzel W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 191–196
9 Castaldi P, Melis P, Silvetti M, Deiana P, Garau G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 2009, 151(3–4): 241–248
10 Lee S H, Kim E Y, Park H, Yun J, Kim J G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by products. Geoderma, 2011, 161(1–2): 1–7
11 Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials, 2006, 136(2): 324–329
pmid: 16426746
12 Mahler R J, Bingham F T, Page A L. Cadmium-enriched sewage sludge application to acid and calcareous soils: effect on yield and cadmium uptake by lettuce and chard. Journal of Environmental Quality, 1978, 7(2): 274–281
13 Mahler R J, Bingham F T. Sposito Garrison, Page A L.Cadmium-enriched sewage sludge application to acid and calcareous soils: relation between treatment, cadmium in saturation extracts, and cadmium uptake. Journal of Environmental Quality, 1980, 9(3): 359–364
14 Lombi E, Hamon R E, McGrath S P, McLaughlin M J. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Environmental Science & Technology, 2003, 37(5): 979–984
pmid: 12666929
15 Luo L, Ma C Y, Ma Y B, Zhang S Z, Lv J T, Cui M Q. New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution, 2011, 159(5): 1108–1113
pmid: 21367499
16 Harada E, Yamaguchi Y, Koizumi N, Hiroshi S. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. Journal of Plant Physiology, 2002, 159(4): 445–448
17 Jones M G, Hughes J, Tregova A, Milne J, Tomsett A B, Collin H A. Biosynthesis of the flavour precursors of onion and garlic. Journal of Experimental Botany, 2004, 55(404): 1903–1918
pmid: 15234988
18 Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006, 144(3): 736– 745
pmid: 16647172
19 Ma Y B, Uren N C. Transformations of heavy metals added to soil - application of a new sequential extraction procedure. Geoderma, 1998, 84(1–3): 157–168
20 Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 2004, 30(3): 351–356
pmid: 14987865
21 Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Research, 1984, 18(12): 1501–1507
22 Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007, 67(2): 278–285
pmid: 16887186
23 Cui Y S, Du X, Weng L P, Zhu Y G. Effect of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. Geoderma, 2008, 146(1–2): 370–377
24 Almas A, Singh B R, Salbu B. Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. Journal of Environmental Quality, 1999, 28(6): 1742–1750
25 Strobel B W, Borggaard O K, Hansen H C B, Andersen M K, Raulund-Rasmussen K. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 2005, 56(2): 189–196
26 Wang L Q. Remediation of Cd-contaminated soils by in situ immobilization techniques. Dissertation for the Doctoral Degree. Beijing: Capital Normal University, 2009 (in Chinese)
27 Chen H M, Zheng C R, Tu C, Shen Z G. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 2000, 41(1–2): 229–234
pmid: 10819205
28 Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60(3): 365–371
pmid: 15924955
29 Kashem M A, Kawai S, Kikuchi N, Takahashi H, Sugawara R, Singh B R. Effect of lherzolite on chemical fractions of Cd and Zn and their uptake by plants in contaminated soil. Water, Air, and Soil Pollution, 2009, 207(1–4): 241–251
[1] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[2] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[3] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[4] Mohsen Jalali, Ziba Hurseresht. Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents[J]. Front. Environ. Sci. Eng., 2020, 14(1): 7-.
[5] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[6] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[7] Chunfeng Wang, Yanchen Zhu, Dan Yao, Guanfei Chen, Lianjun Wang. Assessing human bioaccessibility of trace contaminants in size-fractionated red mud, derived precipitates and geopolymeric blocks[J]. Front. Environ. Sci. Eng., 2017, 11(6): 12-.
[8] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[9] Jiawei JU,Ruiping LIU,Zan HE,Huijuan LIU,Xiwang ZHANG,Jiuhui QU. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion[J]. Front. Environ. Sci. Eng., 2016, 10(3): 467-476.
[10] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
[11] Lei ZHENG,Wei WANG,Wei QIAO,Yunchun SHI,Xiao LIU. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Front. Environ. Sci. Eng., 2015, 9(4): 642-648.
[12] Lin WANG,Yingming XU,Yuebing SUN,Xuefeng LIANG,Dasong LIN. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Front. Environ. Sci. Eng., 2014, 8(6): 877-887.
[13] Meng XUE, Yihui ZHOU, Zhongyi YANG, Biyun LIN, Jiangang YUAN, Shanshan WU. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Front Envir Sci Eng, 2014, 8(2): 226-238.
[14] Farhah Amalya ISMAIL, Ahmad Zaharin ARIS. Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste[J]. Front Envir Sci Eng, 2013, 7(3): 356-364.
[15] Yihui ZHOU, Meng XUE, Zhongyi YANG, Yulian GONG, Jiangang YUAN, Chunyan ZHOU, Baifei HUANG. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Front Envir Sci Eng, 2013, 7(2): 219-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed