Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 482-493    https://doi.org/10.1007/s11783-014-0675-8
RESEARCH ARTICLE |
Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China
Bingbing XU1,Qiujin XU1,*(),Cunzhen LIANG2,Li LI3,Lijia JIANG1
1. State Key Laboratory of the Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
2. Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
3. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
 Download: PDF(591 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Shizhuyuan Polymetallic Mine in Chen-zhou City is an important multi-metal deposit in China. After a dam accident in 1985, there are still a number of mining plants, smelters and tailing ponds in this area. These had the potential to pollute the surrounding groundwater. In this study, groundwater samples were collected from 20 residents’ wells in this area during both dry and wet seasons. In particular, this study focused on the exposure and the health risk assessment of trace heavy metal in groundwater. Multiple statistical analysis and fuzzy comprehensive method were employed to reveal the distribution characteristics of heavy metal and to assess the groundwater quality. Results indicated that Cr, Fe, Ni, Cu, Zn, As, Cd, Ba, Hg and Pb were widespread with low exposure levels. There were 19 wells with low level exposure and one well with a moderate level exposure in the dry season. All of the wells were in low level exposure during the wet season. As and Mn exhibited potential non-carcinogenic concern, because their maximum hazard quotient (HQ) was higher than 1.0. This may cause adverse health effect on adults in dry season or on children in both seasons. Only As, showed that the maximum carcinogenic risk was more than 10-4, suggesting a high cancer risk for children in both dry and wet seasons. Therefore, analysis and reduction the concentrations of As and Mn in groundwater are needed in order to protect the health of residents and especially children in the area.

Keywords groundwater      heavy metal      health risk assessment      mine area     
Corresponding Authors: Qiujin XU   
Online First Date: 13 March 2014    Issue Date: 30 April 2015
 Cite this article:   
Bingbing XU,Qiujin XU,Cunzhen LIANG, et al. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0675-8
http://academic.hep.com.cn/fese/EN/Y2015/V9/I3/482
Fig.1  Study area and sampling points
Fig.2  Box plot of heavy metals distribution in the dry (a) and wet (b) season
metal p-value F
Cr 0.148 2.184
Mn 0.736 0.115
Fe 0.440 0.608
Ni 0.998 0
Cu 0.322 1.007
Zn 0.000* 17.199
As 0.623 0.246
Cd 0.693 0.158
Ba 0.770 0.086
Hg 0.263 1.292
Pb 0.001* 12.197
Tab.1  Analysis of variance of heavy metal exposure in dry and wet seasons
season Cr Mn Fe Ni Cu Zn As Cd Ba Hg Pb
dry season Cr 1 -0.117 0.972* 0.386 0.800* 0.848* 0.948* 0.767* 0.776* 0.952* 0.10
Mn 1 0.002 -0.026 -0.116 -0.099 -0.089 0.529** 0.032 -0.016 -0.391
Fe 1 0.449** 0.788* 0.866* 0.960* 0.842* 0.824* 0.965* -0.066
Ni 1 0.391 0.394 0.398 0.384 0.275 0.303 0.038
Cu 1 0.696* 0.826* 0.610* 0.731* 0.718* -0.023
Zn 1 0.825** 0.692* 0.726* 0.894* 0.201
As 1 0.771* 0.851* 0.931* -0.100
Cd 1 0.716* 0.807* -0.231
Ba 1 0.855* -0.022
Hg 1 -0.017
Pb 1
wet season Cr 1 -0.172 0.201 0.235 0.371 0.081 0.267 0.084 0.598* 0.275 -0.177
Mn 1 0.705* 0.133 0.064 0.206 0.016 0.786* -0.161 0.373 -0.253
Fe 1 0.055 0.462** 0.304 0.618* 0.793* 0.112 0.601* -0.300
Ni 1 0.285 0.286 -0.147 0.091 0.396 0.230 -0.197
Cu 1 0.204 0.766* 0.418 0.558** 0.657* -0.387
Zn 1 0.302 0.270 -0.125 0.547** -0.355
As 1 0.473** 0.303 0.601* -0.274
Cd 1 0.067 0.520** -0.321
Ba 1 0.284 -0.128
Hg 1 -0.476**
Pb 1
Tab.2  Correlation matrixes of 11 metal elements in dry or wet season
Fig.3  Dendrogram of 11 heavy metals in the dry (a) and wet (b) seasons
dry season wet season
PC1 PC2 PC1 PC2 PD3
Cr 0.821 0.277 0.466 0.569 0.197
Mn 0.395 -0.812 0.707 -0.459 0.005
Fe 0.947 -0.021 0.835 -0.274 0.307
Ni 0.725 0.001 0.386 0.447 -0.533
Cu 0.782 0.260 0.755 0.344 0.002
Zn 0.745 0.461 0.474 -0.359 -0.489
As 0.782 -0.005 0.715 -0.193 0.527
Cd 0.812 -0.446 0.780 -0.185 0.211
Ba 0.765 0.049 0.384 0.805 0.213
Hg 0.777 -0.004 0.723 0.035 -0.414
Pb -0.123 0.832 -0.549 0.047 0.437
eigenvalue 5.891 1.909 4.449 1.780 1.386
% of variance 53.556% 17.356% 40.447% 16.181% 12.600%
cumulative % 53.556% 70.912% 40.447% 56.628% 69.228%
Tab.3  Component matrixes for metal elements in dry and wet seasons
season sampling points I II III IV V
dry season 1 9.89 × 10-1 1.13 × 10-2 0.00 0.00 0.00
2 9.95 × 10-1 4.97 × 10-3 0.00 0.00 0.00
3 9.13 × 10-1 8.63 × 10-2 2.54 × 10-4 0.00 0.00
4 9.80 × 10-1 1.96 × 10-2 0.00 0.00 0.00
5 9.94 × 10-1 6.37 × 10-3 0.00 0.00 0.00
6 9.87 × 10-1 1.31 × 10-2 5.26 × 10-5 0.00 0.00
7 1.21 × 10-2 3.55 × 10-2 7.84 × 10-1 1.68 × 10-1 0.00
8 9.76 × 10-1 2.33 × 10-2 8.34 × 10-5 0.00 0.00
9 9.88 × 10-1 1.12 × 10-2 0.00 0.00 0.00
10 9.87 × 10-1 1.29 × 10-2 1.71 × 10-4 0.00 0.00
11 7.54 × 10-1 4.14 × 10-3 7.44 × 10-5 1.67 × 10-1 0.00
12 8.83 × 10-1 2.61 × 10-2 7.74 × 10-2 1.32 × 10-2 0.00
13 1.00 0.00 0.00 0.00 0.00
14 1.00 0.00 0.00 0.00 0.00
15 9.83 × 10-1 1.71 × 10-2 2.95 × 10-4 0.00 0.00
16 1.00 0.00 0.00 0.00 0.00
17 1.00 0.00 0.00 0.00 0.00
18 9.85 × 10-1 1.52 × 10-2 6.10 × 10-5 0.00 0.00
19 4.79 × 10-1 5.21 × 10-2 0.00 0.00 0.00
20 8.36 × 10-1 1.01 × 10-1 5.81 × 10-2 5.05 × 10-3 0.00
wet season 1 9.85 × 10-1 1.46 × 10-2 7.36 × 10-5 0.00 0.00
2 9.85 × 10-1 1.51 × 10-2 1.68 × 10-4 0.00 0.00
3 4.77 × 10-1 5.14 × 10-1 8.95 × 10-3 0.00 0.00
4 8.18 × 10-1 1.81 × 10-1 7.12 × 10-4 0.00 0.00
5 9.86 × 10-1 1.35 × 10-2 1.22 × 10-4 0.00 0.00
6 9.84 × 10-1 1.63 × 10-2 1.32 × 10-4 0.00 0.00
7 7.21 × 10-1 2.79 × 10-1 1.64 × 10-5 0.00 0.00
8 9.85 × 10-1 1.46 × 10-2 1.34 × 10-5 0.00 0.00
9 9.85 × 10-1 1.52 × 10-2 3.04 × 10-5 0.00 0.00
10 9.83 × 10-1 1.60 × 10-2 5.81 × 10-4 0.00 0.00
11 1.66 × 10-1 5.70 × 10-1 0.00 0.00 2.64 × 10-2
12 9.95 × 10-1 5.33 × 10-3 0.00 0.00 0.00
13 9.87 × 10-1 1.29 × 10-2 1.29 × 10-5 0.00 0.00
14 9.84 × 10-1 1.59 × 10-2 0.00 0.00 0.00
15 9.85 × 10-1 1.55 × 10-2 1.46 × 10-5 0.00 0.00
16 9.97 × 10-1 2.40 × 10-3 0.00 0.00 0.00
17 9.87 × 10-1 1.31 × 10-2 0.00 0.00 0.00
18 9.93 × 10-1 7.33 × 10-3 0.00 0.00 0.00
19 9.91 × 10-1 3.19 × 10-3 5.67 × 10-3 0.00 0.00
20 9.89 × 10-1 1.10 × 10-2 2.20 × 10-6 0.00 0.00
Tab.4  Fuzzy comprehensive assessment of 20 sampling wells in dry season or wet season
season index Cr Mn Fe Ni Cu Zn As Cd Ba Hg Pb
dry season concentrations/(mg·L-1) 0.37–2.45 1.33–723.04 61.29–518.87 0.58–6.76 1.24–9.93 43.22–208.47 0.24–16.09 0.03–0.67 60.74–209.86 0.01–0.82 0.38–4.03
drinking water limits/(mg·L-1) 50 100 300 20 1000 1000 10 5 700 1 10
exceeding frequency 15% 5% 5%
maximum excessive multiples 7.23 1.73 1.61
cancer risk for adult 5.9 × 10-6–3.9 × 10-5 1.1 × 10-5–7.6 × 10-4 5.8 × 10-6–1.3 × 10-4 1.0 × 10-7–1.1 × 10-6
cancer risk for children 9.8 × 10-6–6.5 × 10-6 1.9 × 10-5–1.3 × 10-3 9.7 × 10-6–2.2 × 10-4 1.7 × 10-7–1.8 × 10-6
HQ for adult 0.00039–0.026 0.0018–0.95 0.0028–0.023 0.00092–0.011 0.00098–0.0079 0.0046–0.022 0.025–1.70 0.0019–0.042 0.0096–0.033 0.0020–0.16 0.0087–0.091
HQ for children 0.0065–0.043 0.0029–1.59 0.0046–0.039 0.0015–0.018 0.0019–0.013 0.0076–0.037 0.042–2.84 0.0032–0.071 0.016–0.056 0.0033–0.27 0.014–0.15
wet season concentrations /(mg·L-1) 0.41–0.97 0.93–1471.54 52.70–179.70 0.54–5.89 1.03–4.70 23.94–56.18 0.21–16.07 0.02–0.45 46.35–134.04 0.01–0.10 0.13–2.44
drinking water limits/(mg·L-1) 50 100 300 20 1000 1000 10 5 700 1 10
exceeded rate 5% 10%
maximum excessive multiples 7.23 1.73 1.61
cancer risk for adult 6.5 × 10-6–1.5 × 10-5 1.0 × 10-5–7.6 × 10-4 3.9 × 10-6–8.7 × 10-5 3.5 × 10-8–6.6 × 10-7
cancer risk for children 1.1 × 10-5–2.6 × 10-5 1.7 × 10-5–1.3 × 10-3 6.5 × 10-6–1.5 × 10-4 65.8 × 10-8–1.1 × 10-6
HQ for adult 0.0043–0.010 0.0012–1.94 0.0023–0.0081 0.00086–0.0053 0.00082–0.0037 0.0025–0.0059 0.022–1.70 0.0012–0.029 0.0073–0.021 0.0020–0.020 0.0029–0.055
HQ for children 0.0072–0.017 0.0021–3.24 0.0040–0.014 0.0014–0.016 0.0014–0.0062 0.0042–0.0099 0.037–2.83 0.0021–0.048 0.012–0.035 0.0033–0.033 0.0049–0.092
Tab.5  Carcinogenic risk and non- carcinogenic risk of heavy metals in dry and wet season
1 Liu J, Mao J, Ye H, Zhang W. Geology, geochemistry and age of the Hukeng tungsten deposit. Southern China , Ore Geology Reviews, 2011, 43(1): 50–61
https://doi.org/10.1016/j.oregeorev.2011.09.004
2 Sekhar C, Chary N S, Kamala C T, Frank S H. Environmental pathway and risk assessment studies of the Musi River’s heavy metal contamination-A Case Study. Human and Ecological Risk Assessment: An International Journal, 2005, 11(6): 1217–1235
https://doi.org/10.1080/10807030500278594
3 Pertsemli E, Voutsa D. Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece. Journal of Hazardous Materials, 2007, 148(3): 529–537
https://doi.org/10.1016/j.jhazmat.2007.03.019 pmid: 17416464
4 Maret W, Sandstead H H. Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 2006, 20(1): 3–18
https://doi.org/10.1016/j.jtemb.2006.01.006 pmid: 16632171
5 Bermudez G M, Jasan R, Plá R, Pignata M L. Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption. Journal of Hazardous Materials, 2011, 193(15): 264–271
https://doi.org/10.1016/j.jhazmat.2011.07.058 pmid: 21835546
6 Davydova S. Heavy metals as toxicants in big cities. Microchemical Journal, 2005, 79(1–2): 133–136
https://doi.org/10.1016/j.microc.2004.06.010
7 Asante K A, Agusa T, Subramanian A, Ansa-Asare O D, Biney C A, Tanabe S. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere, 2007, 66(8): 1513–1522
https://doi.org/10.1016/j.chemosphere.2006.08.022 pmid: 17084882
8 de Miguel E, Iribarren I, Chacón E, Ordo?ez A, Charlesworth S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 2007, 66(3): 505–513
https://doi.org/10.1016/j.chemosphere.2006.05.065 pmid: 16844191
9 Calderon R L. The epidemiology of chemical contaminants of drinking water. Food and Chemical Toxicology, 2000, 38(1 Suppl): S13–S20
https://doi.org/10.1016/S0278-6915(99)00133-7 pmid: 10717366
10 Lee Y H, Stuebing R B. Heavy metal contamination in the river toad, Bufo juxtasper (Inger), near a copper mine in East Malaysia. Bulletin of Environmental Contamination and Toxicology, 1990, 45(2): 272–279
https://doi.org/10.1007/BF01700195 pmid: 2400844
11 Buchet J P, Lison D. Clues and uncertainties in the risk assessment of arsenic in drinking water. Food and Chemical Toxicology, 2000, 38(1 Suppl): S81–S85
https://doi.org/10.1016/S0278-6915(99)00130-1 pmid: 10717375
12 Pekey H, Karaka? D, Bako?lu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, 2004, 49(9–10): 809–818
https://doi.org/10.1016/j.marpolbul.2004.06.029 pmid: 15530525
13 Liu H Y, Probst A, Liao B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). The Science of the Total Environment, 2005, 339(1–3): 153–166
https://doi.org/10.1016/j.scitotenv.2004.07.030 pmid: 15740766
14 Yin J, Kim S, Lee H, Itay T. K–Ar ages of plutonism and mineralization at the Shizhuyuan W–Sn–Bi–Mo deposit, Hunan Province, China. Journal of Asian Earth Sciences, 2002, 20(2): 151–155
https://doi.org/10.1016/S1367-9120(01)00036-0
15 Zaw K, Peters S G, Cromie P, Burrett C, Hou Z. Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews, 2007, 31(1–4): 3–47
16 Liao X Y, Chen T B, Xie H, Liu Y R. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environment International, 2005, 31(6): 791–798
https://doi.org/10.1016/j.envint.2005.05.030 pmid: 15979720
17 Liu H, Probst A, Liao B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). The Science of the Total Environment, 2005, 339(1–3): 153–166
https://doi.org/10.1016/j.scitotenv.2004.07.030 pmid: 15740766
18 Zhai L, Liao X, Chen T, Yan X, Xie H, Wu B, Wang L. Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. Journal of Environmental Sciences-China, 2008, 20(6): 696–703
https://doi.org/10.1016/S1001-0742(08)62115-4 pmid: 18763564
19 Lei M, Yue Q, Chen T, Huang Z, Liao X, Liu Y, Zheng G, Chang Q. Heavy metal concentrations in soils and plants around Shizhuyuan mining area of Hunan Province. Acta Ecologica Sinica, 2005, 25(5): 1146–1151
20 Singh K P, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 2004, 38(18): 3980–3992
https://doi.org/10.1016/j.watres.2004.06.011 pmid: 15380988
21 Abbas Alkarkhi F M, Ismail N, Easa A M. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. Journal of Hazardous Materials, 2008, 150(3): 783–789
https://doi.org/10.1016/j.jhazmat.2007.05.035 pmid: 17590506
22 Bengra?ne K, Marhaba T F. Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, 2003, 100(1–3): 179–195
https://doi.org/10.1016/S0304-3894(03)00104-3 pmid: 12835021
23 Li J, He M, Han W, Gu Y. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal of Hazardous Materials, 2009, 164(2–3): 976–981
https://doi.org/10.1016/j.jhazmat.2008.08.112 pmid: 18976857
24 Chen K, Jiao J J, Huang J, Huang R. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 2007, 147(3): 771–780
https://doi.org/10.1016/j.envpol.2006.09.002 pmid: 17134805
25 Li S, Zhang Q. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of Hazardous Materials, 2010, 176(1–3): 579–588
https://doi.org/10.1016/j.jhazmat.2009.11.069 pmid: 20018443
26 USEPA. Guidelines for Exposure Assessment. Washington, D C: USEPA, 1992
27 General Administration of Sport of China. The National Physique monitoring Gazette in 2010 of China. 2011. Available online at http://www.sport.gov.cn/n16/n1077/n297454/2052709.html (accessed <day>10th</day><month>Dec.</month>, 2013)
28 Patrick D R. Risk assessment and risk management. In: Patrick D R, ed. Toxic Air Pollution Hand Book. NewYork: Van Nostrand Reinhold, 1994
29 USEPA. Guidance for Performing Aggregate Exposure and Risk Assessments. Washington, D C: USEPA, 1999
30 USEPA. Integrated Risk Information System (IRIS). 2005. Available online at http://www.epa.gov/iris(accessed <month>December</month><day>10</day>, 2013)
31 Liu C W, Lin K H, Kuo Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 2003, 313(1–3): 77–89
https://doi.org/10.1016/S0048-9697(02)00683-6 pmid: 12922062
32 Ministry of Land and Resources of China. Quality Standard for Ground Water (GB/T14848–93). Beijing: Ministry of Land and Resources of China, 1993
33 Huang F, Wang X, Lou L, Zhou Z, Wu J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 2010, 44(5): 1562–1572
https://doi.org/10.1016/j.watres.2009.11.003 pmid: 19944441
34 Ministry of Construction and Ministry of Public Health of China. Sanitary Standard for Drinking Water (GB5749–2006). Beijing: Ministry of Construction and Public Health in China, 2006 (in Chinese)
35 Rodriguez-Proteau1 R, Grant R L. Toxicity Evaluation and Human Health Risk Assessment of Surface and Ground Water Contaminated by Recycled Hazardous Waste Materials. The Handbook of Environmental Chemistry. Berlin: Springer, 2005, 5F, 133–189
[1] Supplementary Material Download
[1] Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das. Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 12-.
[2] Xu Zhang, Huanhuan Yang, Xinlei Wang, Wen Song, Zhaojie Cui. An extraction- assay system: Evaluation on flavonols in plant resistance to Pb and Cd by supercritical extraction- gas chromatography[J]. Front. Environ. Sci. Eng., 2018, 12(4): 6-.
[3] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[4] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[5] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[6] Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(2): 6-.
[7] Deyi Hou, Guanghe Li, Paul Nathanail. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook[J]. Front. Environ. Sci. Eng., 2018, 12(1): 16-.
[8] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[9] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[10] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[11] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
[12] Xubin Pan,Zhongkui Luo,Yongbo Liu. Environmental deterioration of farmlands caused by the irrational use of agricultural technologies[J]. Front. Environ. Sci. Eng., 2016, 10(4): 18-.
[13] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[14] Jiwan SINGH,Ajay S. KALAMDHAD. Effect of lime on speciation of heavy metals during composting of water hyacinth[J]. Front. Environ. Sci. Eng., 2016, 10(1): 93-102.
[15] Jingling LIU,Tao YANG,Qiuying CHEN,Feng LIU,Binbin WANG. Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin[J]. Front. Environ. Sci. Eng., 2016, 10(1): 103-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed