Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 877-887    https://doi.org/10.1007/s11783-014-0676-7
RESEARCH ARTICLE
Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation
Lin WANG1,2,3,Yingming XU1,2,3,*(),Yuebing SUN1,2,3,Xuefeng LIANG1,2,3,Dasong LIN1,2,3
1. Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
2. Key Laboratory of Original Environmental Quality Safety, Ministry of Agriculture, Tianjin 300191, China
3. Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Tianjin 300191, China
 Download: PDF(172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of LCACs focusing on food safety. Pot culture and plot experiments were conducted to screen out LCACs from 35 pakchoi cultivars and to identify the crucial soil factors that affect Cd accumulation in LCACs. Results of the pot culture experiment showed that shoot Cd concentrations under the three Cd treatments significantly varied across cultivars. Two cultivars, Hualv 2 and Huajun 2, were identified as LCACs because their shoot Cd concentrations were lower than 0.2 mg·kg-1 under low Cd treatment and high Cd exposure did not affect the biomass of their shoots. The plot experiment further confirmed the consistency and genotypic stability of the low-Cd-accumulating traits of the two LCACs under various soil conditions. Results also showed that soil phosphorus availability was the most important soil factor in the Cd accumulation of pakchoi, which related negatively not only to Cd uptake by root but also to Cd translocation from root to shoot. The total Cd accumulation and translocation rates were lower in the LCACs than in the high-Cd cultivar, suggesting that Cd accumulation in different cultivars is associated with the Cd uptake by root as well as translocation from root to shoot. This study proves the feasibility of the application of the LCAC strategy in pakchoi cultivation to cope with Cd contamination in agricultural soils.

Keywords pakchoi (Brassica chinensis L.)      cadmium contamination      low-cadmium-accumulating cultivar (LCAC)      genotype variation      soil factor      translocation     
Corresponding Author(s): Yingming XU   
Online First Date: 14 March 2014    Issue Date: 17 November 2014
 Cite this article:   
Lin WANG,Yingming XU,Yuebing SUN, et al. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Front. Environ. Sci. Eng., 2014, 8(6): 877-887.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0676-7
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/877
cultivar providera) ?cultivar provider ?cultivar provider
Qiutian A ?Hainanchigeng C ?Qingyang 46 I
Hanya A ?Chuanshan 35 C ?Taiyangyu I
Aolv 101 A ?Shanghai 605 C ?Dongguan 12 I
Huamei25 A ?Sijiqing C ?Huaying 15 J
Kangrezhibao A ?Taiguosiji D ?Qingbang 56 K
Jinglv 2 A ?Ribenhuaguan D ?Kangre 405 K
Huajun 2 A ?Ribenqingjiang D ?Jinpin 50 K
Qingfeng 34 B ?Zhongqi 605 E ?Jinpinxiaguan28 K
Taiwanqingjiang B ?Jingyou 1 F ?Xiguan 23 L
Shanghai 202 B ?Huwangqing G ?Qingfuling L
Xianggangaijiao C ?Lvxiu 91-1 G ?Hualv 2 M
Taixuanaijiao C ?Xinsiyueman H
Tab.1  Tested cultivars of pakchoi and their providers
tested soils location soil type pH clay /% silt /% sand /% CEC /(cmol·kg-1) organic matter /% total N /(g·kg-1) available P /(mg·kg-1) available K /(mg·kg-1) total Cd /(mg·kg-1)
pot-culture soil 117°03′E, 39°02′N alluvial soil 8.01±0.05 28.97±4.99 61.60±6.08 9.43±1.09 18.26±0.22 2.01±0.15 1.33±0.27 66.70±5.23 328.05±2.83 0.152±0.026
ZS soil a) 123°15′E, 41°52′N meadow brown 6.69±0.41 14.88±2.14 44.46±2.63 40.66±2.50 11.11±0.27 1.69±0.21 1.54±0.36 70.45±6.52 72.10±5.52 2.60±0.39
DL soil b) 117°15′E, 39°12′N alluvial soil 8.22±0.23 21.75±1.15 57.41±3.86 20.84±1.71 14.68±0.90 3.30±0.20 1.26±0.11 43.81±5.78 103.05±8.65 2.93±0.35
LQH soil c) 114°56′E, 30°09′N yellow brown soil 7.12±0.22 23.68±2.53 62.12±1.24 14.20±1.58 12.47±0.18 2.51±0.14 1.48±0.12 14.08±2.35 61.11±4.57 1.23±0.11
LQL soil d) 114°56′E, 30°07′N yellow brown soil 7.05±0.35 25.54±1.66 63.19±1.55 11.27±1.47 10.97±0.19 1.37±0.09 0.83±0.09 18.59±2.01 70.07±3.75 0.686±0.018
Tab.2  Basic physicochemical properties of the tested soils
Fig.1  Shoot biomass (dry weight basis) responses to stress of the 35 tested cultivars. ns, *, and ** indicate that the differences of the shoot biomass between CK and T2 treatments were not significant, significant at the p<0.05 level, and significant at the p<0.01 level, respectively
Fig.2  Shoot Cd concentrations (fresh weight basis) of the tested cultivars under T1 and T2 treatments and their correlation. Selected high-Cd cultivars (?): cv. Xinsiyueman, selected LCACs ( █ ): cv. Hualv 2 and Huajun 2
parameters of Cd accumulation cultivars ZS DL LQH LQL mean
shoot Cd concentrations /(mg·kg-1) Xinsiyueman 0.282±0.020 a a) 0.390±0.035 a 0.394±0.032 a 0.278±0.042 a 0.336 a
Hualv 2 0.196±0.017 b 0.141±0.019 b 0.183±0.022 c 0.143±0.015 b 0.166 c
Huajun 2 0.185±0.025 b 0.205±0.026 b 0.287±0.024 b 0.181±0.021 b 0.215 b
mean 0.221 BC b) 0.245 B 0.288 A 0.201 C
shoot Cd bioaccumulation factor Xinsiyueman 1.036±0.152 a 1.709±0.142 a 4.862±0.568 a 4.543±0.512a 3.037 a
Hualv 2 0.842±0.095 b 0.897±0.112 c 2.684±0.274 c 3.410±0.278 b 1.958 b
Huajun 2 0.760±0.102 b 1.252±0.145 b 3.668±0.298 b 2.932±0.213 b 2.153 b
root Cd bioaccumulation factor Xinsiyueman 2.529±0.210 a 3.025±0.311 a 5.196±0.455 a 4.671±0.457 b 3.855 a
Hualv 2 1.435±0.195 b 1.892±0.201 b 4.230±0.413 b 6.067±0.587 a 3.406 b
Huajun 2 1.646±0.112 b 2.237±0.216 b 4.715±0.369 b 4.455±0.396 b 3.263 b
Cd translocation rate Xinsiyueman 0.869±0.075 a 0.916±0.104 a 0.964±0.114 a 0.952±0.085 a 0.925 a
Hualv 2 0.674±0.058 c 0.731±0.062 c 0.749±0.052 c 0.732±0.071 b 0.722 c
Huajun 2 0.772±0.079 b 0.828±0.093 b 0.847±0.078 b 0.829±0.095 b 0.819 b
Tab.3  Shoot Cd concentrations (fresh weight basis), Cd bioaccumulation factors and translocation rates (dry weight basis) in the three cultivars of pakchoi grown in four soils in the plot experiment
soils LQH DL ZS
LQL 0.788* 0.830* 0.673
LQH 0.908** 0.761*
DL 0.905**
Tab.4  Correlations (r) of the shoot Cd concentrations (fresh weight basis) of tested cultivars between four soils
dependent variable (y) multiple regression equation r value F value
root con. in cv. Hualv 2 /(mg·kg-1) y = 3.175+ 0.891x2– 0.013x3a) 0.998* b) 1278.048*
root con. in cv. Huajun 2 /(mg·kg-1) y = 7.533+ 2.482x2 – 1.116x5 0.970* 32.370*
shoot bioaccumulation factor in cv. Xinsiyueman y = 11.910 – 0.074 x3 – 0.847x5 0.998* * b) 1683.887**
shoot bioaccumulation factor in cv. Hualv 2 y = 2.063 – 1.274x1 + 0.312x5 0.980* 1577.769*
shoot bioaccumulation factor in cv. Huajun 2 y = 3.996 – 0.050x3 0.950* 18.648*
root bioaccumulation factor in cv. Xinsiyueman y = 5.589 – 0.047x3 0.959* 23.062*
root bioaccumulation factor in cv. Hualv 2 y = 7.014 – 1.938x1 0.967* 28.704*
root bioaccumulation factor in cv. Huajun 2 y = 10.084 – 0.059x3 – 0.640x5 0.997** 2804.752**
Cd translocation rate in cv. Xinsiyueman y = 0.985 – 0.002x3 0.998** 603.977**
Cd translocation rate in cv. Hualv 2 y = 0.687 – 0.001x3 + 0.006x4 + 0.004x1 0.998** 2451.931**
Cd translocation rate in cv. Huajun 2 y = 0.816 – 0.002x3 + 0.012x1 + 0.003x4 0.997* 1645.941*
Tab.5  Results of step-wise multiple regression analyses for soil factors affecting significantly Cd concentration in root, shoot bioaccumulation factor, root bioaccumulation factor and Cd translocation rate of the tested cultivars (dry weight basis)
cultivars total dry weight /(g·plant-1) total plant Cd /μg plant Cd concentration /(μg·g-1) shoot yield /(g·plant-1) shoot Cd concentration /(μg·g-1)
Xinsiyueman 2.49±0.36 a a) 10.58±1.25 a 3.95±0.41 a 2.32±0.18 a 3.72±0.58 a
Hualv 2 2.64±0.25 a 7.11±0.85 b 2.58±0.35 c 2.44±0.31 a 2.61±0.35 b
Huajun 2 2.44±0.31 a 8.01±0.67 b 2.99±0.31 b 2.24±0.15 a 3.04±0.41 b
Tab.6  Comparison of growth, Cd concentrations and Cd accumulation in shoots and whole plant of the tested cultivars (dry weight basis) in the plot experiment
1 Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 1993, 51: 173–212
https://doi.org/10.1016/S0065-2113(08)60593-3
2 Ryan J A, Pahren H R, Lucas J B. Controlling cadmium in the human food chain: a review and rationale based on health effects. Environmental Research, 1982, 28(2): 251–302
https://doi.org/10.1016/0013-9351(82)90128-1 pmid: 6288368
3 Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60(1–4): 193–207
https://doi.org/10.1016/S0013-7952(00)00101-0
4 Liu W T, Zhou Q X, Sun Y B, Liu R. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution, 2009, 157(6): 1961–196719188009
https://doi.org/10.1016/j.envpol.2009.01.005
5 Wang J L, Yuan J G, Yang Z Y, Huang B F, Zhou Y H, Xin J L, Gong Y L, Yu H. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942–8949
https://doi.org/10.1021/jf900812s pmid: 19739670
6 Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation. The Science of the Total Environment, 2008, 390(2–3): 301–310
https://doi.org/10.1016/j.scitotenv.2007.10.038 pmid: 18036635
7 Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. The Science of the Total Environment, 2006, 370(2–3): 302–309
https://doi.org/10.1016/j.scitotenv.2006.06.013 pmid: 16870236
8 Greger M, L?fstedt M. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 2004, 44(2): 501–507
9 Chen F, Dong J, Wang F, Wu F B, Zhang G P, Li G M, Chen Z F, Chen J X, Wei K. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 2007, 67(10): 2082–2088
https://doi.org/10.1016/j.chemosphere.2006.10.014 pmid: 17257649
10 Kurz H, Schulz R, R?mheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition and Soil Science, 1999, 162(3): 323–328
https://doi.org/10.1002/(SICI)1522-2624(199906)162:3<323::AID-JPLN323>3.0.CO;2-M
11 Clark J M, McCaig T N, DePauw R M, Knox R E, Clark F R, Fernandez M R, Ames N P. Registration of “Strongfield” durum wheat. Crop Science, 2006, 46(5): 2306–2307
https://doi.org/10.2135/cropsci2005.12.0454
12 Zhang K, Wang J B, Yang Z Y, Xin G R, Yuan J G, Xin J L, Huang C. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars. Frontiers of Environmental Science & Engineering, 2013, 7(1): 85–96
https://doi.org/10.1007/s11783-012-0399-3
13 McLaughlina M J, Parker D R, Clarke J M. Metals and micronutrients-food safety issues. Field Crops Research, 1999, 60(1–2): 143–163
https://doi.org/10.1016/S0378-4290(98)00137-3
14 Gong Y L, Yuan J G, Yang Z Y, Zhou Y H, Lu B Y, Wang J L. Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresenius Environmental Bulletin, 2010, 19(2): 190–197
15 Ishikawa S, Ae N, Sugiyama M, Murakami M, Arao T. Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination. Soil Science and Plant Nutrition, 2005, 51(1): 101–108
https://doi.org/10.1111/j.1747-0765.2005.tb00012.x
16 Xin J L, Huang B F, Yang Z Y, Yuan J G, Dai H W, Qiu Q. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 2010, 175(1–3): 468–476
https://doi.org/10.1016/j.jhazmat.2009.10.029 pmid: 19875230
17 Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 2001, 212(5–6): 696–709
https://doi.org/10.1007/s004250000439 pmid: 11346943
18 Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109(4): 1427–1433
pmid: 12228679
19 Nabulo G, Black C R, Young S D. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environmental Pollution, 2011, 159(2): 368–376
https://doi.org/10.1016/j.envpol.2010.11.007 pmid: 21129831
20 Yang Q W, Xu Y, Liu S J, He J F, Long F Y. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology and Environmental Safety, 2011, 74(6): 1664–1669
https://doi.org/10.1016/j.ecoenv.2011.05.006 pmid: 21601282
21 Wang Q R, Dong Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination: An International Journal, 2001, 10(5): 497–510
22 Wang L, Zhou Q X, Ding L L, Sun Y B. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 2008, 154(1–3): 818–825
https://doi.org/10.1016/j.jhazmat.2007.10.097 pmid: 18077088
23 Bao S D. Soil and Agriculture Chemistry Analysis. Beijing: China Agriculture Press, 2000 (in Chinese)
24 Zeng X B, Li L F, Mei X R. Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Agricultural Sciences in China, 2008, 7(9): 1115–1126
https://doi.org/10.1016/S1671-2927(08)60154-6
25 Wang J L, Fang W, Yang Z Y, Yuan J G, Zhu Y, Yu H. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Journal of Agricultural and Food Chemistry, 2007, 55(22): 9118–9123
https://doi.org/10.1021/jf0716432 pmid: 17914880
26 Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006, 144(3): 736–745
https://doi.org/10.1016/j.envpol.2006.03.001 pmid: 16647172
27 Harris M R, Harrison S J, Wilson N J, Lepp N W. Varietal differences in trace metal partitioning by six potato cultivars grown on contaminated soil. In: Proceedings of the International Conference on Heavy Metals in the Environment. Edinburgh, UK: CEP Consultants, 1981, 309–402
28 He J Y, Zhu C, Ren Y F, Yan Y P, Jiang D. Genotypic variation in grain cadmium concentration of lowland rice. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 711–716
https://doi.org/10.1002/jpln.200525101
29 van den Brink N, Lammertsma D, Dimmers W, Boerwinkel M C, vander Hout A. Effects of soil properties on food web accumulation of heavy metals to the wood mouse (Apodemus sylvaticus). Environmental Pollution, 2010, 158(1): 245–251
https://doi.org/10.1016/j.envpol.2009.07.013 pmid: 19647912
30 Zeng F R, Mao Y, Cheng W D, Wu F B, Zhang G P. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution, 2008, 153(2): 309–314
https://doi.org/10.1016/j.envpol.2007.08.022 pmid: 17905495
31 Bolan N S, Adriano D C, Duraisamy P, Mani A, Arulmozhiselvan K. Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil, 2003, 250(1): 83–94
https://doi.org/10.1023/A:1022826014841
32 Dheri G S, singh Brar M, Malhi S S. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. Journal of Plant Nutrition and Soil Science, 2007, 170(4): 495–499
https://doi.org/10.1002/jpln.200625051
33 Qiu Q, Wang Y T, Yang Z Y, Yuan J G. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food and Chemical Toxicology, 2011, 49(9): 2260–2267
https://doi.org/10.1016/j.fct.2011.06.024 pmid: 21693161
34 Jiang H M, Yang J C, Zhang J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution, 2007, 147(3): 750–756
https://doi.org/10.1016/j.envpol.2006.09.006 pmid: 17275154
35 Yu Z G, Zhou Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus. Journal of Hazardous Materials, 2009, 167(1–3): 38–43
https://doi.org/10.1016/j.jhazmat.2008.12.082 pmid: 19179005
[1] Kun ZHANG, Jianbing WANG, Zhongyi YANG, Guorong XIN, Jiangang YUAN, Junliang XIN, Charlie HUANG. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars[J]. Front Envir Sci Eng, 2013, 7(1): 85-96.
[2] Yuan LI , Yanqun ZU , Qixian FANG , Zhaohua GAO , Christian SCHVARTZ , . Relationship between heavy metal concentrations of herbaceous plants and soils at four Pb-Zn mining sites in Yunnan, China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 325-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed