Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 444-452    https://doi.org/10.1007/s11783-014-0679-4
RESEARCH ARTICLE
Modified pretreatment method for total microbial DNA extraction from contaminated river sediment
Yun FANG1,2,3,4,Meiying XU1,4,*(),Xingjuan CHEN1,4,Guoping SUN1,4,Jun GUO1,4,Weimin WU5,Xueduan LIU2,3,*()
1. Guangdong Institute of Microbiology, Guangzhou 510070, China
2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
3. Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, China
4. State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), Guangzhou 510070, China
5. Department of Civil & Environmental Engineering, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA94305, USA
 Download: PDF(700 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Extraction of high-quality microbial DNA from contaminated environmental samples is an essential step in microbial ecological study. Based on previously published methods for soil and sediment samples, a modified pretreatment method was developed for extracting microbial DNA from heavily contaminated river sediment samples via selection of optimal pretreatment parameters (i.e., reagent solution, reaction duration, and temperature). The pretreatment procedure involves washing the river sediment sample for three times with a solution containing 0.1 mol·L-1 ethylene diamine tetraacetic acid (EDTA), 0.1 mol·L-1 Tris (pH 8.0), 1.5 mol·L-1 NaCl, 0.1 mol·L-1 NaH2PO4, and Na2HPO4 at 65°C with 180 r·min-1 for 15 min to remove humic materials and heavy metals prior to the employment of standard DNA extraction procedures. We compared the results of standard procedure DNA extraction following pretreatment, without pretreatment, and with using a commercial PowerSoilTM DNA Isolation Kit. The results indicated that the pretreatment significantly improved the DNA quality based on DNA yield, DNA fragment length, and determination of prokaryotic diversity. Prokaryotic diversity exhibited in the DNA with the pretreatment was also considerably higher than that extracted with the PowerSoilTM DNA Isolation Kit only. The pretreatment method worked well even with a small amount of sediment sample (0.25 g or even lower). The method provides a novel, simple, cost-effective tool for DNA extraction for microbial community analysis in environmental monitoring and remediation processes.

Keywords river sediment      DNA extraction      contaminant      pretreatment      microbial community     
Corresponding Author(s): Meiying XU,Xueduan LIU   
Online First Date: 14 March 2014    Issue Date: 30 April 2015
 Cite this article:   
Yun FANG,Meiying XU,Xingjuan CHEN, et al. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment[J]. Front. Environ. Sci. Eng., 2015, 9(3): 444-452.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0679-4
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/444
parameter value DNA yields(μg·g-1 (wet wt) of sediment) A260/A280 ratio A260/A230 ratio
solution S0 118.84±8.82 1.88±0.02 1.57±0.04
S1 52.40±7.26 1.84±0.04 1.31±0.03
S2 79.76±9.42 1.62±0.01 0.91±0.06
duration/min 0 149.58±20.83 1.93±0.004 1.79±0.02
5 132.87±4.28 1.93±0.009 1.83±0.02
15 157.08±4.70 1.95±0.005 1.84±0.005
30 122.40±3.72 1.91±0.01 1.79±0.05
60 126.98±14.92 1.93±0.009 1.81±0.11
temperature/°C 25 134.65±8.67 1.93±0.004 1.81±0.05
37 139.46±6.23 1.92±0.004 1.77±0.02
50 114.91±5.56 1.92±0.004 1.79±0.01
65 104.17±3.69 1.92±0.00 1.91±0.02
sample mass/g 0.25 85.67±0.14 1.90±0.004 1.91±0.03
0.12 76.47±3.21 1.85±0.008 1.85±0.03
0.06 104.54±13.57 1.82±0.04 1.99±0.05
0.03 87.72±24.55 1.84±0.01 1.89±0.17
Tab.1  Comparison of DNA yield and purity of the crude DNA with different pretreatment parameters
Fig.1  Agarose gel electrophoresis of the total crude DNA extracted from the sediment samples with different mass. M: λDNA/HindIII marker; lane 1 and 2: 0.25 g; lane 3 and 4: 0.12 g; lane 5 and 6: 0.06 g; lane 7 to 10: 0.03 g
Fig.2  Agarose gel electrophoresis profiles of the total crude DNA extracted with different pretreatment temperatures. M: λDNA/HindIII marker; lanes 1 to 3: 25°C; lane 4 to 6: 37°C; lane 7 to 9: 50°C; lane 10 to 12: 65°C
Fig.3  Agarose gel electrophoresis profiles of the restriction enzyme digestion products of crude DNA samples extracted with different pretreatment temperatures. M: λDNA/HindIII marker
Fig.4  Agarose gel electrophoresis profiles of the PCR products of V3 region of 16S rRNA gene from the crude DNA samples extracted with different methods. (a) DNA samples extracted with different pretreatment temperatures, and (b) DNA samples extracted with our modified method (lane 1 and 2) versus with the traditional standard extraction method (lane 3 and 4). M: DS 5000 marker. CK: control treatment (without a DNA template)
Fig.5  DGGE gel profiles of the DNA samples with different extraction methods. Lane 1: with a PowerSoilTM DNA Isolation Kit; Lanes 2 and 3: with our proposed method with pretreatment
1 Cai J N, Cao Y Z, Tan H J, Wang Y M, Luo J Q. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta. Journal of Environmental Monitoring, 2011, 13(9): 2450–2456
https://doi.org/10.1039/c1em10062a pmid: 21761082
2 Mehler W T, Li H Z, Lydy M J<?Pub Caret1?>, You J. Identifying the causes of sediment-associated toxicity in urban waterways of the Pearl River Delta, China. Environmental Science & Technology, 2011, 45(5): 1812–1819
https://doi.org/10.1021/es103552d pmid: 21291230
3 Santhiya G, Lakshumanan C, Selvin J, Asha D. Microbiological analysis of seawater and sediments in urban shorelines: occurrence of heavy metals resistance bacteria on Chennai beaches, Bay of Bengal. Microchemical Journal, 2011, 99(2): 197–202
https://doi.org/10.1016/j.microc.2011.05.004
4 Wu L, Kellogg L, Devol A H, Tiedje J M, Zhou J. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74(14): 4516–4529
https://doi.org/10.1128/AEM.02751-07 pmid: 18515485
5 Pires A C C, Cleary D F R, Almeida A, Cunha ?, Dealtry S, Mendon?a-Hagler L C S, Smalla K, Gomes N C M. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Applied and Environmental Microbiology, 2012, 78(16): 5520–5528
https://doi.org/10.1128/AEM.00386-12 pmid: 22660713
6 Hollister E B, Engledow A S, Hammett A J M, Provin T L, Wilkinson H H, Gentry T J. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME Journal, 2010, 4(6): 829–838
https://doi.org/10.1038/ismej.2010.3 pmid: 20130657
7 Bowman J S, Rasmussen S, Blom N, Deming J W, Rysgaard S, Sicheritz-Ponten T. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. The ISME Journal, 2012, 6(1): 11–20
pmid: 21716307
8 Ning J, Liebich J, K?stner M, Zhou J, Sch?ffer A, Burauel P. Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology, 2009, 82(5): 983–993
https://doi.org/10.1007/s00253-009-1912-0 pmid: 19247649
9 Delmont T O, Robe P, Clark I, Simonet P, Vogel T M. Metagenomic comparison of direct and indirect soil DNA extraction approaches. Journal of Microbiological Methods, 2011, 86(3): 397–400
https://doi.org/10.1016/j.mimet.2011.06.013 pmid: 21723887
10 Amorim J H, Macena T N S, Lacerda-Junior G V, Rezende R P, Dias J C T, Brendel M, Cascardo J C M. An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genetics and Molecular Research, 2008, 7(4): 1226–1232
https://doi.org/10.4238/vol7-4gmr509 pmid: 19065757
11 Fitzpatrick K A, Kersh G J, Massung R F. Practical method for extraction of PCR-quality DNA from environmental soil samples. Applied and Environmental Microbiology, 2010, 76(13): 4571–4573
https://doi.org/10.1128/AEM.02825-09 pmid: 20435765
12 Fortin N, Beaumier D, Lee K, Greer C W. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. Journal of Microbiological Methods, 2004, 56(2): 181–191
https://doi.org/10.1016/j.mimet.2003.10.006
13 Purohit H J, Kapley A, Moharikar A A, Narde G. A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants. Journal of Microbiological Methods, 2003, 52(3): 315–323
https://doi.org/10.1016/S0167-7012(02)00185-9 pmid: 12531500
14 Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Applied and Environmental Microbiology, 2008, 74(9): 2902–2907
https://doi.org/10.1128/AEM.02161-07 pmid: 18344341
15 Leuko S, Goh F, Ibá?ez-Peral R, Burns B P, Walter M R, Neilan B A. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles, 2008, 12(2): 301–308
https://doi.org/10.1007/s00792-007-0124-8 pmid: 18087671
16 Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316–322
pmid: 8593035
17 Braida M D, Daniels L M, Kitts C L. Removal of PCR inhibitors from soil DNA by chemical flocculation. Journal of Microbiological Methods, 2003, 52(3): 383–393
18 Leff L G, Dana J R, McArthur J V, Shimkets L J. Comparison of methods of DNA extraction from stream sediments. Applied and Environmental Microbiology, 1995, 61(3): 1141–1143
pmid: 7793915
19 Miller D N, Bryant J E, Madsen E L, Ghiorse W C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 1999, 65(11): 4715–4724
pmid: 10543776
20 Rojas-Herrera R, Narváez-Zapata J, Zamudio-Maya M, Mena-Martínez M E. A simple silica-based method for metagenomic DNA extraction from soil and sediments. Molecular Biotechnology, 2008, 40(1): 13–17
https://doi.org/10.1007/s12033-008-9061-8 pmid: 18373226
21 Lakay F M, Botha A, Prior B A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. Journal of Applied Microbiology, 2007, 102(1): 265–273
https://doi.org/10.1111/j.1365-2672.2006.03052.x
22 Liu J, Deng D Y, Xu M Y, Sun G P. Characteristics of organic pollutants in the sediments from a typical electronics industrial zone. Environmental Sciences (China), 2013, 34(3): 326–333 (in Chinese)
23 Deng D Y, Sun G P, Guo J, Zhang H T, Zhang Q, Xu M Y. Investigation on the distribution and potential ecological risk of heavy metal in the sediments from typical electrical industrial zone. Environmental Sciences (China), 2012, 33(5): 1700–1766 (in Chinese)
24 Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, Xiao X, Ran R, Cheng F, Peng X, Wang Z, Wa Tang U. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere, 2003, 52(9): 1411–1422
https://doi.org/10.1016/S0045-6535(03)00477-6 pmid: 12867171
25 Enright M J, Scott E E, Chang K. Regional Powerhouse: The Greater Pearl River Delta and the Rise of China. Chichester: Wiley, 2005
26 Csaikl U, Bastian H, Brettschneider R, Gauch S, Meir A, Schauerte M, Scholz F, Sperisen C, Vornam B, Ziegenhagen B. Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Molecular Biology Reporter, 1998, 16(1): 69–86
https://doi.org/10.1023/A:1007428009556
27 Watson R J, Blackwell B. Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Canadian Journal of Microbiology, 2000, 46(7): 633–642
https://doi.org/10.1139/w00-043 pmid: 10932357
28 Lahiri D K, Schnabel B. DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochemical Genetics, 1993, 31(7–8): 321–328
https://doi.org/10.1007/BF00553174 pmid: 8274138
29 Wang G C, Wang Y. Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology, 1997, 63(12): 4645–4650
pmid: 9406382
[1] Supplementary Material Download
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[4] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[7] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[8] Lu Song, Can Wang, Yizhu Wang. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere[J]. Front. Environ. Sci. Eng., 2020, 14(6): 95-.
[9] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[10] Quan Yuan, Hui Gong, Hao Xi, Kaijun Wang. Aerobic granular sludge formation based on substrate availability: Effects of flow pattern and fermentation pretreatment[J]. Front. Environ. Sci. Eng., 2020, 14(3): 49-.
[11] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[12] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[13] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[14] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[15] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed