Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 683-692    https://doi.org/10.1007/s11783-014-0680-y
RESEARCH ARTICLE
Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship
Davoud BEIKNEJAD,Mohammad Javad CHAICHI()
Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
 Download: PDF(415 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper the photolysis half-lives of the model dyes in water solutions and under ultraviolet (UV) radiation were determined by using a continuous-flow spectrophotometric method. A quantitative structure-property relationship (QSPR) study was carried out using 21 descriptors based on different chemometric tools including stepwise multiple linear regression (MLR) and partial least squares (PLS) for the prediction of the photolysis half-life (t1/2) of dyes. For the selection of test set compounds, a K-means clustering technique was used to classify the entire data set, so that all clusters were properly represented in both training and test sets. The QSPR results obtained with these models show that in MLR-derived model, photolysis half-lives of dyes depended strongly on energy of the highest occupied molecular orbital (EHOMO), largest electron density of an atom in the molecule (ED+) and lipophilicity (logP). While in the model derived from PLS, besides aforementioned EHOMO and ED+ descriptors, the molecular surface area (Sm), molecular weight (MW), electronegativity (χ), energy of the second highest occupied molecular orbital (EHOMO-1) and dipole moment (μ) had dominant effects on logt1/2 values of dyes. These were applicable for all classes of studied dyes (including monoazo, disazo, oxazine, sulfonephthaleins and derivatives of fluorescein). The results were also assessed for their consistency with findings from other similar studies.

Keywords dye      photolysis half-life      quantitative structure-property relationship      continuous-flow      stepwise multiple linear regression      partial least squares     
Corresponding Author(s): Mohammad Javad CHAICHI   
Issue Date: 20 June 2014
 Cite this article:   
Davoud BEIKNEJAD,Mohammad Javad CHAICHI. Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship[J]. Front.Environ.Sci.Eng., 2014, 8(5): 683-692.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0680-y
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/683
#dyesSmμEHOMOEHOMO-1ED+χMWlog Plog t1/2(obs)alog t1/2(calc)bclusterNo.
MLRPLS
1cbromophenol blue584.745.85801-9.51942-9.62426.34745.3485669.961-0.321.72361.87501.64843
2phenol red414.715.77098-9.14872-9.29856.92525.0385354.377-0.531.39791.35821.39261
3pyrogallol red395.564.51842-9.13585-9.25006.92175.0875400.359-4.681.30101.45741.32382
4cacid red 87530.565.07932-9.45153-9.70336.90315.2015647.896-1.681.51851.62211.44382
5cresol red477.487.40527-9.00316-9.17456.92474.9530382.430-0.221.31201.24231.29622
6bromocresol purple561.825.14670-9.22319-9.37346.92595.1140540.222-0.121.44721.40261.47303
7mordant brown 6482.569.65516-9.44678-10.18026.36005.6380318.245-5.421.92451.94751.93991
8basic brown 4554.122.11964-7.88302-8.01255.35934.2245388.474-4.071.16911.17981.16532
96-aminofluorescein397.326.62781-8.51138-9.28356.37404.9895347.326-2.421.11801.16971.14001
10fluorescein370.825.36194-9.13863-9.43406.28004.9010332.312-1.891.55781.66181.53161
112,7-dichlorofluorescein440.424.10915-9.26547-9.57457.00275.0335401.202-2.331.54501.45821.53732
12cmordant brown 4469.467.77568-8.48599-9.21046.39025.0575332.275-7.831.31411.28371.21871
13calcein708.108.99386-9.37232-9.78226.36245.0695622.541-4.571.76531.86931.76684
14cbromothymol blue661.026.93193-9.15420-9.25246.94655.0880624.3831.641.41911.29701.3994
15mordant brown 24543.184.72866-9.53513-10.07156.38665.7185375.297-7.312.21482.05062.19132
16bromocresol green587.007.47800-9.41858-9.47166.94025.2906698.0158.091.30101.32931.31133
17bromopyrogallol red498.678.46078-8.46100-9.24456.96525.2225558.151-3.140.80710.89810.77183
18gallocyanine429.345.89200-8.28878-9.22316.32415.0644300.270-1.891.17611.01211.19581
Tab.1  Data set, selected descriptors and corresponding observed, MLR and PLS calculated values of log t1/2along with dyes cluster membership.
#substratestructure#substratestructure
1bromophenol blue<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig1.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig1.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig1" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>10fluorescein<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images\fse-13122-bd-tb2fig10.jpg" ScaleToFitWidth="10cm" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="FSE-13122-BD.doc_images\FSE-13122-BD-tb2fig10.tif" ScaleToFit="1" ScaleToFitWidth="10cm"/></InlineMediaObject>
2phenol red<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig2.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig2.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig2" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>112,7-dichloro-fluorescein<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig11.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig11.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig11" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
3pyrogallol red<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig3.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig3.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig3" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>12mordant brown 4<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig12.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig12.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig12" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
4acid red 87<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig4.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig4.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig4" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>13calcein<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig13.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig13.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig13" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
5cresol red<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig5.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig5.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig5" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>14bromothymol blue<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig14.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig14.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig14" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
6bromocresol purple<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig6.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig6.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig6" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>15mordant brown 24<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig15.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig15.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig15" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
7mordant brown 6<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig7.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig7.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig7" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>16bromocresol green<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig16.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig16.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig16" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
8basic brown 4<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig8.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig8.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig8" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>17bromopyrogallol red<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig17.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig17.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig17" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
96-aminofluorescein<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig9.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig9.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig9" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>18gallocyanine<InlineMediaObject OutputMedium="Online"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig18.jpg" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject><InlineMediaObject OutputMedium="All"><ImageObject FileRef="fse-13122-bd.doc_images/fse-13122-bd-tb2fig18.tif" Format="TIFF" OrigFileRef="fse-13122-bd-tb2fig18" ScaleToFitHeight="86.9pt" ScaleToFitWidth="84.0pt" ScaleToFit="1"/></InlineMediaObject>
Tab.2  The chemical structures of the dataset molecules
Fig.1  Schematic diagram of the laboratory-constructed flow system for on-line monitoring of photodegradation of dyes
No.notationdescription
1Smmolecular surface area
2Vmmolecular volume
3logPlipophilicity
4MRmolar refractivity
5HOFfinal heat of formation
6EEelectronic Energy
7CCRcore-core Repulsion (eV)
8Nnumber of filled levels
9MWmolecular weight
10ELUMOenergy of the lowest unoccupied molecular orbital
11EHOMOenergy of the highest occupied molecular orbital
12ELUMO-EHOMOenergy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital
13ηmolecular hardness
14χelectronegativity
15ELUMO+1energy of the second lowest unoccupied molecular orbital
16EHOMO-1energy of the second highest occupied molecular orbital
17q-the most negative net atomic charge on the molecule
18q+the most positive net atomic charge on the molecule
19ED+largest electron density of an atom in the molecule
20ED-smallest electron density of an atom in the molecule
21μdipole moment
Tab.3  Explanation of the descriptors used in this study
No.EHOMOED+log PVIF
EHOMO11.400
ED+-0.51811.664
log P-0.0900.40711.227
Tab.4  Correlation coefficient matrix and the variance in?ation factors (VIF) for Eq. 3
Fig.2  Plot of predicted versus observed log t1/2values for the stepwise MLR model
Fig.3  The plot of the fraction contribution of standardized coefficients of the 21 descriptors (Table 3) to log t1/2 of dyes
Fig.4  Plot of predicted versus observed log t1/2 values for the PLS model
Fig.5  Effect of light source of spectrophotometer on dyes
Fig.6  Effect of distance from the radiation source on the average light intensity striking on the surface of the dye solution
1 MozaP N, HustertK, FeichtE, KettrupA. Photolysis of imidacloprid in aqueous solution. Chemosphere, 1998, 36(3): 497-502
doi: 10.1016/S0045-6535(97)00359-7
2 JiaoS, ZhengS, YinD, WangL, ChenL. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere, 2008, 73(3): 377-382
doi: 10.1016/j.chemosphere.2008.05.042 pmid: 18617218
3 DingT, JacobsD, LavineB K. Liquid chromatography-mass spectrometry identification of imidacloprid photolysis products. Microchemical Journal, 2011, 99(2): 535-541
doi: 10.1016/j.microc.2011.07.005
4 SanchesS, LeitãoC, PenetraA, CardosoV V, FerreiraE, BenolielM J, CrespoM T B, PereiraV J. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources. Journal of Hazardous Materials, 2011, 192(3): 1458-1465
doi: 10.1016/j.jhazmat.2011.06.065 pmid: 21784577
5 ChenJ, QuanX, YanY, YangF, PeijnenburgW J G M. Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere, 2001, 42(3): 263-270
doi: 10.1016/S0045-6535(00)00077-1 pmid: 11100926
6 KrylovS N, HuangX-D, ZeilerL F, DixonD G, GreenbergB M. Mechanistic quantitative structure- activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 1997, 16(11): 2283-2295
7 BaoY, HuangQ, WangW, XuJ, JiangF, FengC. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water. Frontiers of Environmental Science and Engineering, 2011, 5(4): 505-511
doi: 10.1007/s11783-011-0318-2
8 MooreT, PagniR M. Unusual photochemistry of 4-chlorobiphenyl in water. Journal of Organic Chemistry, 1987, 52(5): 770-773
doi: 10.1021/jo00381a012
9 LatchD E, StenderB L, PackerJ L, ArnoldW A, McNeillK. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. Environmental Science and Technology, 2003, 37(15): 3342-3350
doi: 10.1021/es0340782 pmid: 12966980
10 AhmedS, RasulM G, BrownR, HashibM A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 2011, 92(3): 311-330
doi: 10.1016/j.jenvman.2010.08.028 pmid: 20950926
11 SalaicesM, SerranoB, de LasaH I. Photocatalytic conversion of phenolic compounds in slurry reactors. Chemical Engineering Science, 2004, 59(1): 3-15
doi: 10.1016/j.ces.2003.07.015
12 BoscoM, LarrechiM S. Rapid and quantitative evaluation of the effect of process variables on the kinetics of photocatalytic degradation of phenol using experimental design techniques and parallel factor (PARAFAC) analysis. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1203-1207
doi: 10.1007/s00216-007-1764-3 pmid: 18185923
13 HeimstadE S, BastosP M, ErikssonJ, BergmanK, HarjuM. Quantitative structure- photodegradation relationships of polybrominated diphenyl ethers, phenoxyphenols and selected organochlorines. Chemosphere, 2009, 77(7): 914-921
doi: 10.1016/j.chemosphere.2009.08.037 pmid: 19762064
14 LuG N, DangZ, TaoX Q, YangC, YiX Y. Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors. Science of the Total Environment, 2007, 373(1): 289-296
doi: 10.1016/j.scitotenv.2006.08.045 pmid: 17173954
15 ChenJ, PeijnenburgW J G M, QuanX, ChenS, MartensD, SchrammK W, KettrupA. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution, 2001, 114(1): 137-143
doi: 10.1016/S0269-7491(00)00195-0 pmid: 11444002
16 LiX, FangL, HuangJ, YuG. Photolysis of mono- through deca-chlorinated biphenyls by ultraviolet irradiation in n-hexane and quantitative structure-property relationship analysis. Journal of Environmental Sciences (China), 2008, 20(6): 753-759
doi: 10.1016/S1001-0742(08)62123-3 pmid: 18763572
17 NiuJ, HuangL, ChenJ, YuG, SchrammK W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere, 2005, 58(7): 917-924
doi: 10.1016/j.chemosphere.2004.09.051 pmid: 15639263
18 XuJ, WangL, LiuL, BaiZ, WangL. QSPR study of the absorption maxima of azobenzene dyes. Bulletin of the Korean Chemical Society, 2011, 32(11): 3865-3872
doi: 10.5012/bkcs.2011.32.11.3865
19 SinkkonenS, PaasivirtaJ. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 2000, 40(9-11): 943-949
doi: 10.1016/S0045-6535(99)00337-9 pmid: 10739030
20 DewarM J S, ZoebischE G, HealyE F, StewartJ J P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 1985, 107(13): 3902-3909
doi: 10.1021/ja00299a024
21 HyperChem® Computational Chemistry, Hypercube, Inc. 1996
22 PearsonR G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(22): 8440-8441
doi: 10.1073/pnas.83.22.8440 pmid: 16578791
23 ChenJ W, KongL R, ZhuC M, HuangQ G, WangL S. Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere, 1996, 33(6): 1143-1150
doi: 10.1016/0045-6535(96)00250-0
24 JohnsonR, WichernD. Applied Multivariate Statistical Methods, 3rd ed. New York: Prentice Hall, 1992
25 MitraI, SahaA, RoyK. Chemometric QSAR modeling and in silico design of antioxidant NO donor phenols. Scientia Pharmaceutica, 2011, 79(1): 31-57
doi: 10.3797/scipharm.1011-02 pmid: 21617771
26 FatemiM H, IzadiyanP. Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere, 2011, 84(5): 553-563
doi: 10.1016/j.chemosphere.2011.04.021 pmid: 21549407
27 MullenL M A, DuchowiczP R, CastroE A. QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents. Chemometrics and Intelligent Laboratory Systems, 2011, 107(2): 269-275
doi: 10.1016/j.chemolab.2011.04.011
28 DurbinJ, WatsonG S. Testing for serial correlation in least squares regression. I. Biometrika, 1950, 37(3-4): 409-428
doi: 10.1093/biomet/37.3-4.409 pmid: 14801065
29 DurbinJ, WatsonG S. Testing for serial correlation in least squares regression. II. Biometrika, 1951, 38(1-2): 159-178
doi: 10.1093/biomet/38.1-2.159 pmid: 14848121
30 MINITAB: Statistical Software, MINITAB Inc., PA, USA
31 SpjuthO, WillighagenE L, GuhaR, EklundM, WikbergJ E S. Towards interoperable and reproducible QSAR analyses: Exchange of datasets. Journal of Cheminformatics, 2010, 2(1): 5-11
doi: 10.1186/1758-2946-2-5 pmid: 20591161
32 KarelsonM, LobanovV S, KatritzkyA R. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 1996, 96(3): 1027-1044
doi: 10.1021/cr950202r pmid: 11848779
33 MattaC F, ArabiA A. Electron-density descriptors as predictors in quantitative structure—activity/property relationships and drug design. Future Medicinal Chemistry, 2011, 3(8): 969-994
doi: 10.4155/fmc.11.65 pmid: 21707400
34 RiessI, MünchW. The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theoretica Chimica Acta, 1981, 58(4): 295-300
doi: 10.1007/BF02426905
35 IvanM G, ScaianoJ C. Photoimaging and lithographic processes in polymers. In: AllenN S, ed. Photochemistry and Photophysics of Polymer Materials. New Jersey: John Wiley & Sons, Inc., 2010, 479-508
36 OhuraT, AmagaiT, MakinoM. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane. Chemosphere, 2008, 70(11): 2110-2117
doi: 10.1016/j.chemosphere.2007.08.064 pmid: 17936329
37 FangL, HuangJ, YuG, LiX. Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol. Ecotoxicology and Environmental Safety, 2009, 72(5): 1587-1593
doi: 10.1016/j.ecoenv.2008.09.013 pmid: 18995905
38 TodeschiniR, ConsonniV. Handbook of molecular descriptors. In: MannholdR, KubinyiH, TimmermanH, eds. Methods and Principles in Medicinal Chemistry. New York: Wiley-VCH, Weinheim, 2000
39 ZeppF G, SchlotzhauerP F. Photoreactivity of selected aromatic hydrocarbons in water. In: JonesP R, LeberP, editors. Polynuclear Aromatic Hydrocarbons. MI: Ann Arbor Science Publishers, Ann Arbor, 1979, 141-158
40 ChenJ W, QuanX, YangF L, PeijnenburgW J G M. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Science of the Total Environment, 2001, 269(1-3): 163-170
doi: 10.1016/S0048-9697(00)00827-5 pmid: 11305337
41 ChenJ, WangD, WangS, QiaoX, HuangL. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers. Ecotoxicology and Environmental Safety, 2007, 66(3): 348-352
doi: 10.1016/j.ecoenv.2006.01.003 pmid: 16488010
42 NiuJ, YuG. Molecular structural characteristics governing biocatalytic oxidation of PAHs with hemoglobin. Environmental Toxicology and Pharmacology, 2004, 18(1): 39-45
doi: 10.1016/j.etap.2004.05.002 pmid: 21782733
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[3] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[4] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[5] Chaojie Jiang, Lifen Liu, John C. Crittenden. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity[J]. Front. Environ. Sci. Eng., 2016, 10(4): 15-.
[6] María Fernanda HORST,Verónica LASSALLE,María Luján FERREIRA. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 746-769.
[7] Xinhua WANG, Jingmei LI, Xiufen LI, Guocheng DU. Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(4): 615-622.
[8] Yueping BAO, Qiuying HUANG, Wenlong WANG, Jiangjie XU, Fan JIANG, Chenghong FENG. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water[J]. Front Envir Sci Eng Chin, 2011, 5(4): 505-511.
[9] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
[10] ZOU Haiyan, XI Danli. Performance of bioferric-submerged membrane bioreactor for dyeing wastewater treatment[J]. Front.Environ.Sci.Eng., 2007, 1(3): 374-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed