Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 436-443    https://doi.org/10.1007/s11783-014-0681-x
RESEARCH ARTICLE
Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts
Shaoxia YANG1,*(),Yu SUN1,Hongwei YANG2,Jiafeng WAN3
1. National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China
 Download: PDF(307 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O3, were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol-1. The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.

Keywords catalytic wet air oxidation (CWAO)      carbon nanotubes (CNTs)      phenol      nitrobenzene      aniline     
Corresponding Author(s): Shaoxia YANG   
Issue Date: 30 April 2015
 Cite this article:   
Shaoxia YANG,Yu SUN,Hongwei YANG, et al. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0681-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/436
Fig.1  SEM and TEM morphologies of the MWCNTs: (a) SEM image of MWCNTs-1; (b) SEM image of MWCNTs-2; (c) TEM image of MWCNTs-3
samples surface area/(m2·g-1) C:O/(at.%) O1s /(at.%)
C=O: C-O: COO
MWCNTs-1 257 94.47:5.53 33.28: 60.58: 6.14
MWCNTs-2 255 93.68:6.32 31.79: 58.45: 9.76
MWCNTs-3 241 93.26:6.74 30.07: 54.90: 15.03
Tab.1  Structural characteristics of the functionalized MWCNTs
Fig.2  Effect of ozonation time on the phenol removal in the CWAO (T= 155°C, PT=2.5 MPa, [phenol]0=1000 mg·L-1, catalyst loading=0.4 g·L-1)
Fig.3  Effect of the catalyst loading on the phenol removal in the CWAO over the MWCNTs-3 (T=155°C, PT=2.5 MPa, [phenol]0=1000 mg·L-1)
Fig.4  Effect of reaction temperature on the phenol removal in the CWAO over the MWCNTs-3 (PT=2.5 MPa, [phenol]0=1000 mg·L-1, catalyst loading= 0.4 g·L-1): (a) phenol removal; (b) lnCph/Cph,0
Fig.5  Effect of the initial phenol concentration on the phenol removal in the CWAO over the MWCNTs-3 (T=155°C, PT=2.5 MPa, catalyst loading= 0.4 g·L-1)
Fig.6  CWAO of nitrobenzene in the presence of phenol over the MWCNTs-3 (T=155°C, PT=2.5 MPa, [Nitrobenzene]0=700 mg·L-1, [Phenol]0=1000 mg·L-1, catalyst loading=0.4 g·L-1): (a)NB removal; (b) phenol removal
Fig.7  CWAO of aniline over the MWCNTs-3 (T=155°C, PT=2.5 MPa, [aniline]0=2000 mg·L-1, catalyst loading=0.8 g·L-1)
1 Wang Y T. Effect of chemical oxidation on anerobic biodegradation of model phenolic compounds. Water Environment Research, 1992, 64(3): 268–273
https://doi.org/10.2175/WER.64.3.12
2 Lee S H, Carberry J B. Biodegradation of PCP enhanced by chemical oxidation pretreatment. Water Environment Research, 1992, 64(5): 682–690
https://doi.org/10.2175/WER.64.5.4
3 Li H B, Cao H B, Li Y P, Zhang Y, Liu H R. Effect of organic compounds on nitrite accumulation during the nitrification process for coking wastewater. Water Science & Technology, 2010, 62(9): 2096–2105
https://doi.org/10.2166/wst.2010.371 pmid: 21045337
4 Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environmental Science & Technology, 2012, 46(18): 10191–10198
pmid: 22913426
5 Mishra V S, Mahajani V V, Joshi J B. Wet air oxidation. Industrial & Engineering Chemistry Research, 1995, 34(1): 2–48
https://doi.org/10.1021/ie00040a001
6 Luck F. Wet air oxidation: past, present and future. Catalysis Today, 1999, 53(1): 81–91
https://doi.org/10.1016/S0920-5861(99)00112-1
7 Yang S X, Liu Z Q, Huang X H, Zhang B P. Wet air oxidation of epoxy acrylate monomer industrial wastewater. Journal of Hazardous Materials, 2010, 178(1–3): 786–791
https://doi.org/10.1016/j.jhazmat.2010.02.009 pmid: 20207076
8 Oliviero L, Barbier J Jr, Duprez D. Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Applied Catalysis B: Environmental, 2003, 40(3): 163–184
https://doi.org/10.1016/S0926-3373(02)00158-3
9 Benitez F J, García J, Acero J L, Real F J, Roldan G. Non-catalytic and catalytic wet air oxidation of pharmaceuticals in ultra-pure and natural waters. Process Safety and Environmental Protection, 2011, 89(5): 334–341
https://doi.org/10.1016/j.psep.2011.06.007
10 Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58
https://doi.org/10.1016/j.apcatb.2003.12.019
11 Yang S X, Besson M, Descorme C. Catalytic wet air oxidation of formic acid over Pt/CexZr1-xO2 catalysts at low temperature and atmospheric pressure. Applied Catalysis B: Environmental, 2010, 100(1–2): 282–288
https://doi.org/10.1016/j.apcatb.2010.08.004
12 Wang J B, Zhu W P, Yang S X, Wang W, Zhou Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37
https://doi.org/10.1016/j.apcatb.2007.08.014
13 Tran N D, Besson M, Descorme C. TiO2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions. New Journal of Chemistry, 2011, 35(10): 2095–2104
https://doi.org/10.1039/c1nj20160c
14 Bistan M, Ti?ler T, Pintar A. Ru/TiO2 catalyst for efficient removal of estrogens from aqueous samples by means of wet-air oxidation. Catalysis Communications, 2012, 22(10): 74–78
https://doi.org/10.1016/j.catcom.2012.02.020
15 Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A, General, 2003, 253(2): 337–358
https://doi.org/10.1016/S0926-860X(03)00549-0
16 Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics in Catalysis, 2005, 33(1–4): 3– 50
https://doi.org/10.1007/s11244-005-2497-1
17 Suarez-Ojeda M E, Stüber F, Fortuny A, Fabregat A, Carrera J, Font J. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst. Applied Catalysis B: Environmental, 2005, 58(1–2): 105–114
https://doi.org/10.1016/j.apcatb.2004.11.017
18 Yang S X, Li X, Zhu W P, Wang J B, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452
https://doi.org/10.1016/j.carbon.2007.12.006
19 Gomes H T, Machado B F, Ribeiro A, Moreira I, Rosário M, Silva A M T, Figueiredo J L, Faria J L. Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 2008, 159(2–3): 420–426
https://doi.org/10.1016/j.jhazmat.2008.02.070 pmid: 18394796
20 Rocha R P, Sousa J P S, Silva A M T, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336
https://doi.org/10.1016/j.apcatb.2011.03.009
21 Soria-Sánchez M, Maroto-Valiente A, álvarez-Rodríguez J, Mu?oz-Andrés V, Rodríguez-Ramos I, Guerrero-Ruíz A. Carbon nanostrutured materials as direct catalysts for phenol oxidation?in aqueous phase. Applied Catalysis B: Environmental, 2011, 104(1–2): 101–109
https://doi.org/10.1016/j.apcatb.2011.02.023
22 Milone C, Hameed A R S, Piperopoulos E, Santangelo S, Lanza M, Galvagno S. Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon. Industrial & Engineering Chemistry Research, 2011, 50(15): 9043–9053
https://doi.org/10.1021/ie200492g
23 Yang S X, Wang X G, Yang H W, Sun Y, Liu Y X. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 2012, 233–234: 18–24
https://doi.org/10.1016/j.jhazmat.2012.06.033 pmid: 22819477
24 Zhan W, Wang X C, Li D S, Ren Y Z, Liu D Q, Kang J X. Catalytic wet air oxidation of high concentration pharmaceutical wastewater. Water Science & Technology, 2013, 67(10): 2281–2286
https://doi.org/10.2166/wst.2013.123 pmid: 23676399
25 Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength p-nitrophenol wastewater over Ru and Pt catalysts: Influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–24: 141–150
https://doi.org/10.1016/j.apcatb.2012.04.001
26 Zhu W P, Bin Y J, Li Z H, Jiang Z P, Yin T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 2002, 36(8): 1947–1954
27 Lin S S, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions. Water Research, 2003, 37(4): 793–800
https://doi.org/10.1016/S0043-1354(02)00422-0 pmid: 12531261
28 Sadana A, Katzer J R. Catalytic oxidation of phenol in aqueous solution over copper oxide. Industrial & Engineering Chemistry Fundamentals, 1974, 13(2): 127–134
https://doi.org/10.1021/i160050a007
29 Li N, Descorme C, Besson M. Catalytic wet air oxidation of aqueous solution of 2-chlorophenol over Ru/zirconia catalysts. Applied Catalysis B: Environmental, 2007, 71(3–4): 262–270
https://doi.org/10.1016/j.apcatb.2006.09.009
30 Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160
https://doi.org/10.1016/S1385-8947(99)00022-4
31 Arslan-Alaton I, Ferry J L. H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects. Applied Catalysis B: Environmental, 2002, 38(4): 283–293
https://doi.org/10.1016/S0926-3373(02)00059-0
32 Fu D M, Chen J P, Liang X M. Wet air oxidation of nitrobenzene enhanced by phenol. Chemosphere, 2005, 59(6): 905–908
https://doi.org/10.1016/j.chemosphere.2004.11.004 pmid: 15811421
33 Ji L L, Shao Y, Xu Z Y, Zheng S R, Zhu D Q. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environmental Science & Technology, 2010, 44(16): 6429–6436
https://doi.org/10.1021/es1014828 pmid: 20704245
34 Zhao L, Sun Z Z, Ma J, Liu H L. Influencing mechanism of bicarbonate on the catalytic ozonation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese. Journal of Molecular Catalysis A Chemical, 2010, 322(1–2): 26–32
https://doi.org/10.1016/j.molcata.2010.02.007
35 Mestl G, Maksimova N I, Keller N, Roddatis V V, Schl?gl R. Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angewandte Chemie (International Edition in English), 2001, 40(11): 2066–2068
https://doi.org/10.1002/1521-3773(20010601)40:11<2066::AID-ANIE2066>3.0.CO;2-I pmid: 11433444
[1] Supplementary Material Download
[1] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[2] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[3] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[4] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[5] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[6] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[7] Kaikai Zhang, Peng Sun, Yanrong Zhang. Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar[J]. Front. Environ. Sci. Eng., 2019, 13(2): 22-.
[8] Yongsheng Zhao, Lin Lin, Mei Hong. Nitrobenzene contamination of groundwater in a petrochemical industry site[J]. Front. Environ. Sci. Eng., 2019, 13(2): 29-.
[9] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[10] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[11] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[12] Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8-.
[13] Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2-.
[14] Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1-.
[15] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed