Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 129-140    https://doi.org/10.1007/s11783-014-0683-8
RESEARCH ARTICLE
A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis
Pingjian YANG1,2,Feifei DONG1,Yong LIU1,3,Rui ZOU4,*(),Xing CHEN1,Huaicheng GUO1,*
1. College of Environmental Science and Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
2. School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
3. Yunnan International Center for Pleantu Lakes, Kunming 650034, China
4. Tetra Tech, Inc. Fairfax, VA 22030, USA
 Download: PDF(389 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To enhance the effectiveness of watershed load reduction decision making, the Risk Explicit Interval Linear Programming (REILP) approach was developed in previous studies to address decision risks and system returns. However, REILP lacks the capability to analyze the tradeoff between risks in the objective function and constraints. Therefore, a refined REILP model is proposed in this study to further enhance the decision support capability of the REILP approach for optimal watershed load reduction. By introducing a tradeoff factor (α) into the total risk function, the refined REILP can lead to different compromises between risks associated with the objective functions and the constraints. The proposed model was illustrated using a case study that deals with uncertainty-based optimal load reduction decision making for Lake Qionghai Watershed, China. A risk tradeoff curve with different values of α was presented to decision makers as a more flexible platform to support decision formulation. The results of the standard and refined REILP model were compared under 11 aspiration levels. The results demonstrate that, by applying the refined REILP, it is possible to obtain solutions that preserve the same constraint risk as that in the standard REILP but with lower objective risk, which can provide more effective guidance for decision makers.

Keywords refined risk explicit interval linear programming      decision making      objective-constraint uncertainty tradeoff      aspiration level      Lake Qionghai Watershed     
Corresponding Author(s): Rui ZOU,Huaicheng GUO   
Online First Date: 25 March 2014    Issue Date: 03 December 2015
 Cite this article:   
Pingjian YANG,Feifei DONG,Yong LIU, et al. A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis[J]. Front. Environ. Sci. Eng., 2016, 10(1): 129-140.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0683-8
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/129
Fig.1  Study area (modified from Liu et al. [32])
Fig.2  Objective-Constraint risks curve
strategies S7 R7,1 R7,2 R7,3
standard percentage α= 0.01 percentage standard percentage α= 0.01 percentage
j = 1 24.75 13.18 24.75 13.19 24.75 13.19 24.75 13.20
j = 2 7.39 3.94 7.39 3.94 7.39 3.94 7.39 3.94
j = 3 5.42 2.88 5.42 2.88 5.42 2.88 5.42 2.89
j = 4 5.40 2.88 5.40 2.88 5.40 2.88 5.40 2.88
j = 5 42.63 22.70 42.63 22.71 42.63 22.71 42.69 22.76
j = 6 69.01 36.75 69.00 36.75 69.12 36.82 71.47 38.11
j = 7 3.43 1.82 3.43 1.83 3.43 1.83 3.43 1.83
j = 8 27.75 14.78 27.75 14.78 27.62 14.71 25.01 13.34
j = 9 0.65 0.35 0.63 0.34 0.63 0.34 0.63 0.34
j = 10 1.35 0.72 1.35 0.72 1.35 0.72 1.35 0.72
total 187.77 100.00 187.74 100.00 187.73 100.00 187.54 100.00
Tab.1  Refined REILP and standard REILP among different strategies
Fig.3  Load reduction (t·a−1) for different strategies of the refined REILP (R7,2) and standard REILP (S7) under aspiration levels= 0.7 and risk tradeoff= 0.1
standard (S7) percentage α = 0.01(R7,1) percentage α = 0.1(R7,2) percentage α = 1(R7,3) percentage
sub-watershed S7 R7,1 R7,2 R7,2R7,3
standard percentage α = 0.01 percentage standard percentage α = 0.01 percentage
i = 1 6.67 3.55 6.67 3.55 6.65 3.54 6.28 3.35
i = 2 0.58 0.31 0.58 0.31 0.57 0.31 0.52 0.28
i = 3 11.96 6.37 78.59 41.86 11.93 6.36 73.61 39.25
i = 4 5.41 2.88 5.40 2.88 5.39 2.87 5.17 2.76
i = 5 70.40 37.49 6.50 3.46 6.83 3.64 6.23 3.32
i = 6 6.37 3.39 6.32 3.37 6.31 3.36 6.06 3.23
i = 7 1.00 0.53 0.96 0.51 0.95 0.51 0.86 0.46
i = 8 12.20 6.50 12.20 6.50 12.20 6.50 12.20 6.51
i = 9 6.69 3.56 5.71 3.04 5.70 3.04 5.61 2.99
i = 10 4.04 2.15 4.69 2.50 3.78 2.01 3.59 1.92
i = 11 16.80 8.95 16.87 8.98 75.42 40.18 16.36 8.72
i = 12 0.74 0.39 0.03 0.02 1.58 0.84 1.46 0.78
i = 13 1.32 0.70 0.83 0.44 1.83 0.98 1.74 0.93
i = 14 1.51 0.81 1.50 0.80 2.57 1.37 2.17 1.16
i = 15 1.26 0.67 1.50 0.80 1.91 1.02 1.17 0.63
i = 16 4.15 2.21 5.03 2.68 5.06 2.69 4.94 2.63
i = 17 1.43 0.76 0.95 0.51 0.96 0.51 1.97 1.05
i = 18 1.11 0.59 0.06 0.03 3.07 1.64 2.67 1.42
i = 19 1.12 0.60 0.35 0.19 2.00 1.07 1.90 1.01
i = 20 33.01 17.58 33.01 17.58 33.01 17.58 33.01 17.60
total 187.77 100.00 187.74 100.00 187.73 100.00 187.54 100.00
Tab.2  Refined REILP and standard REILP among different sub-watersheds
Fig.4  Load reduction (t·a−1) for different sub-watersheds of refined REILP (R7,2) and standard REILP (S7) under aspiration levels= 0.7 and risk tradeoff= 0.1
1 Conley D J. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 2000, 410: 87−96
https://doi.org/10.1023/A:1003784504005
2 National Research Council. Assessing the TMDL Approach to Water Quality Management. Washington, DC: National Academy Press, 2001
3 Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891): 926−929
https://doi.org/10.1126/science.1156401 pmid: 18703733
4 Liu Y, Guo H C, Yu Y J, Dai Y L, Zhou F. Ecological-economic modeling as a tool for lake-watershed management: a case study of Lake Qionghai Watershed, China. Limnologica-Ecology and Management of Inland Waters, 2008, 38(2): 89−104
https://doi.org/10.1016/j.limno.2007.11.001
5 Conley D J, Paerl H W, Howarth R W, Boesch D F, Seitzinger S P, Havens K E, Lancelot C, Likens G E. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science, 2009, 323(5917): 1014−1015
https://doi.org/10.1126/science.1167755 pmid: 19229022
6 Voinov A, Gaddis E B. Lessons for successful participatory watershed modeling: a perspective from modeling practitioners. Ecological Modelling, 2008, 216(2): 197−207
https://doi.org/10.1016/j.ecolmodel.2008.03.010
7 Liu Y, Zou R, Riverson J, Yang P J, Guo H C. Guided adaptive optimal decision making approach for uncertainty based watershed scale load reduction. Water Research, 2011, 45(16): 4885−4895
https://doi.org/10.1016/j.watres.2011.06.038 pmid: 21783223
8 Ayyub B M Uncertainty Modeling and Analysis in Civil Engineering. Boca Raton, FL: CRC Press, 1998
9 Oberkampf W L, DeLand S M, Rutherford B M, Diegert K V, Alvin K F. Error and uncertainty in modeling and simulation. Reliability Engineering & System Safety, 2002, 75(3): 333−357
https://doi.org/10.1016/S0951-8320(01)00120-X
10 Baresel C, Destouni G. Uncertainty-accounting environmental policy and management of water systems. Environmental science & technology, 2007, 41(10): 3653−3659
https://doi.org/10.1021/es061515e pmid: 17547192
11 Pintér J. Stochastic modelling and optimization for environmental management. Annals of Operations Research, 1991, 31(1): 527−544
https://doi.org/10.1007/BF02204868
12 Kerachian R, Karamouz M. A stochastic conflict resolution model for water quality management in reservoir-river systems. Advances in Water Resources, 2007, 30(4): 866−882
https://doi.org/10.1016/j.advwatres.2006.07.005
13 Ghosh S, Suresh H R, Mujumdar P P. Fuzzy waste load allocation model: application to a case study. Journal of Intelligent Systems, 2009, 17(1−3): 283−296
14 Nikoo M R, Kerachian R, Karimi A. A nonlinear interval model for water and waste load allocation in river basins. Water resources management, 2012, 26(10): 2911−2926
https://doi.org/10.1007/s11269-012-0056-7
15 Luo B, You J. A watershed-simulation and hybrid optimization modeling approach for water-quality trading in soil erosion control. Advances in water resources, 2007, 30(9): 1902−1913
https://doi.org/10.1016/j.advwatres.2007.03.001
16 Rommelfanger H. Fuzzy linear programming and applications. Journal of Operational Research, 1996, 92(3): 512−527
https://doi.org/10.1016/0377-2217(95)00008-9
17 Chang N B, Chen H W, Shaw D G, Yang C H. Water pollution control in a river basin by interactive fuzzy interval multi-objective programming. Journal of Environmental Engineering, 1997, 123(12): 1208−1216
https://doi.org/10.1061/(ASCE)0733-9372(1997)123:12(1208)
18 Zou R, Liu Y, Liu L, Guo H C. REILP approach for uncertainty-based decision making in civil engineering. Journal of Computing in Civil Engineering, 2009, 24(4): 357−364
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000037
19 Rommelfanger H, Hanuscheck R, Wolf J. Linear programming with fuzzy objectives. Fuzzy Sets and Systems, 1989, 29(1): 31−48
https://doi.org/10.1016/0165-0114(89)90134-6
20 Huang G H, Cohen S J, Yin Y Y, Bass B. Incorporation of inexact dynamic optimization with fuzzy relation analysis for integrated climate change impact study. Journal of Environmental Management, 1996, 48(1): 45−68
https://doi.org/10.1006/jema.1996.0065
21 Li Y P, Huang G H. An inexact two-stage mixed integer linear programming method for solid waste management in the City of Regina. Journal of Environmental Management, 2006, 81(3): 188−209
https://doi.org/10.1016/j.jenvman.2005.10.007 pmid: 16678336
22 Wu S M, Huang G H, Guo H C. An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Science and Technology, 1997, 36(5): 235−242
https://doi.org/10.1016/S0273-1223(97)00479-4
23 Qin X S, Huang G H, Zeng G M, Chakma A, Huang Y F. An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 2007, 180(3): 1331−1357
https://doi.org/10.1016/j.ejor.2006.03.053
24 Ozdemir M S, Saaty T L. The unknown in decision making: what to do about it. European Journal of Operational Research, 2006, 174(1): 349−359
https://doi.org/10.1016/j.ejor.2004.12.017
25 Fiedler M, Nedoma J, Ramik J, Rohn J, Zimmermann K Linear Optimization Problems with Inexact Data. New York: Springer, 2006
26 Liu Y, Zou R, Guo H C. A risk explicit interval linear programming model for uncertainty-based nutrient-reduction optimization for the Lake Qionghai. Journal of Water Resources Planning and Management, 2011, 137(1): 83−91
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000099
27 Wen C G, Lee C S. A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resources Research, 1998, 34(3): 427−436
https://doi.org/10.1029/97WR02943
28 Rodriguez H G, Popp J, Maringanti C, Chaube I. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed. Water Resources Research, 2011, 47(1): 1−13
https://doi.org/10.1029/2009WR008549
29 Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C. Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environmental Modelling & Software, 2011, 26(8): 999−1008
https://doi.org/10.1016/j.envsoft.2011.02.010
30 Hansen E R, Walster G W Global Optimization Using Interval Analysis. 2nd edition. New York: CRC Press, 2004
31 Tong S C. Interval number, fuzzy number linear programming. Fuzzy Sets and Systems, 1994, 66(3): 301−306 doi:10.1016/0165-0114(94)90097-3
32 Liu Y, Guo H C, Zhou F, Qin X S, Huang K, Yu Y J. Inexact chance-constrained linear programming model for optimal water pollution management at the watershed scale. Journal of Water Resources Planning and Management, 2008, 134(4): 347−356
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:4(347)
33 Liu Y, Guo H C, Zhang Z X, Wang L J, Dai Y L, Fan Y Y. An optimization method based on scenario analysis for watershed management under uncertainty. Environmental Management, 2007, 39(5): 678−690
https://doi.org/10.1007/s00267-006-0029-9 pmid: 17377728
34 Kramer D B, Polasky S, Starfield A, Palik B, Westphal L, Snyder S, Jakes P, Hudson R, Gustafson E. A comparison of alternative strategies for cost-effective water quality management in lakes. Environmental Management, 2006, 38(3): 411−425
https://doi.org/10.1007/s00267-005-0011-y pmid: 16799845
35 Young R A. Uncertainty and the Environment: Implications for Decision Making and Environmental Policy. Cheltenham: Edward Elgar Pub, 2001
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed