Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    0, Vol. Issue () : 103-113    https://doi.org/10.1007/s11783-014-0686-5
RESEARCH ARTICLE
Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin
Jingling LIU1,*(),Tao YANG1,Qiuying CHEN1,2,Feng LIU1,Binbin WANG1
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control & School of Environment, Beijing Normal University, Beijing 100875, China
2. College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
 Download: PDF(1006 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The distribution and characteristics of seven heavy metals in sediments located in the typical ecological units (eco-units) (e.g., rivers, lakes, and estuaries) of Haihe River Basin were analyzed. The Hakanson potential ecological risk index was used for ecological risk assessment. The results indicated that the concentration scales of As, Hg, Cr, Cd, Pb, Cu, and Zn in the eco-units were 2.08 to 24.80 mg·g−1, 0.01 to 1135.50 mg·g−1, 28.70 to 152.73 mg·g−1, 0.03 to 195765.83 mg·g−1, 8.65 to 157.82 mg·g−1, 6.47 to 178.61 mg·g−1, and 21.09 to 1076.25 mg·g−1, respectively. The maximum concentrations of Hg, Cd, and Zn showed higher levels than other water bodies around the world. Hg and Cd have high concentrations in Zhangweinanhe River (1135.50 and 195765.83 mg·g−1, respectively) and Haihe Estuary (790.50 and 548.47 mg·g−1, respectively). According to the ecological factor, Cd and Hg showed very strong ecological risks. The seven heavy metals, namely, Cd, Hg, As, Cr, Pb, Cu, and Zn, exhibited ecological risk levels in descending order. Based on the potential ecological risk index, Luanhe River and Baiyangdian Lake had moderate ecological risks, whereas every site in Zhangweinanhe River and Haihe Estuary had substantial risk levels. The risk order of the typical eco-units are as follows: Zhangweinan River (2278345.68)>Estuary (161914.74)>Luanhe River (191.54)>Baiyangdian Lake (120.95). These results provided a scientific basis for water environment improvement and risk management of the Haihe River Basin.

Keywords Haihe River Basin      ecological risk      eco-units      heavy metals     
Corresponding Author(s): Jingling LIU   
Online First Date: 28 March 2014    Issue Date: 03 December 2015
 Cite this article:   
Jingling LIU,Tao YANG,Qiuying CHEN, et al. Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin[J]. Front. Environ. Sci. Eng., 0, (): 103-113.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0686-5
https://academic.hep.com.cn/fese/EN/Y0/V/I/103
Fig.1  Location of the Haihe River Basin in China
Fig.2  Sample sites of the typical eco-units in the Haihe River Basin
river site longitude (°) E latitude (°) N land use type
Luanhe River Guotaizi 119.74284 40.89957 WB
Guojiatun 117.08100 41.59167 DL
Boluonuo 117.32545 41.09882 DL
Zhangbaiwan 116.5926 41.41383 DL
Sandaohezi 116.83696 41.63786 RL, DL
Xiahenan 117.31678 41.37559 DL
Hanjiaying 117.12431 41.57583 RL, DL
Wulieheshang 117.97490 41.03924 DL
Wuliehexia 117.97215 41.01489 RL, DL
Baohekou 113.06223 36.22734 DL
Zhangweinan River Yuecheng 114.17436 36.29398 WB
Xiaonanhai 114.09004 35.99878 WB
Xinxiang 113.91921 35.31624 RL, DL
Weihui 114.09148 35.42318 DL
Longwangmiao 114.19543 35.45305 DL
Guantao 115.31852 36.53902 RL, DL
Dezhou 113.09784 35.16449 DL
Xinjizha 117.59093 38.07128 WB
Baiyangdian Lake Wangjiazhai 116.00493 38.91501 WB
Guangdianzhangzhuang 116.03256 38.89751 WB
Zaolinzhuang 115.68590 38.63226 WB
Guolikou 116.01857 38.93325 WB
Duancunshang 115.94235 38.8462 WB
Datianzhuang 116.09973 38.87329 WB
Caiputai 116.02466 38.82398 WB
Quantou 116.09907 38.86691 WB
Dazhangzhuang 116.86691 38.95467 WB
Nanliuzhuang 116.39416 39.15888 RL, WB
Estuary Haihe Estuary 117.79102 39.00236 WB
Duliujian Estuary 117.70566 38.78129 WB
Ziyaxin Estuary 117.55879 38.65883 WB
Zhangweinan Estuary 117.59051 38.07114 WB
Tuhai Estuary 118.06043 37.99729 WB
Tab.1  Location of the sampling sites for the typical eco-units
potential eco-risk factor, E r i potential eco-risk index, RI
critical range for ith heavy metal eco-risk factor grade critical range for the seven heavy metals eco-risk index grade
E r i < 40 low RI < 110 low
40 < E r i < 80 moderate 110 ≤ RI < 220 moderate
80 < E r i < 160 considerable 220 ≤ RI < 440 high
160 < E r i < 320 high RI ≥ 440 very high
E r i > 320 very high
Tab.2  Indices and grades of potential eco-risk assessment
Fig.3  Concentration of heavy metals in sediments along Luanhe River
River Site As Hg Cr Cd Pb Cu Zn
Zhangweinan River Yuecheng 10.83 21.00 64.52 142.82 21.65 23.21 60.70
Xiaonanhai 8.46 84.00 65.90 370.28 38.93 60.14 114.35
Xinxiang 7.48 1135.50 121.33 195765.83 40.78 148.94 1076.25
Weihui 11.58 266.00 84.16 27272.25 31.77 43.03 264.81
Longwangmiao 15.28 470.50 130.18 4319.43 62.34 88.48 574.88
Guantao 3.96 162.00 56.79 411.90 20.96 16.47 84.56
Dezhou 9.82 358.50 64.83 146.27 25.49 26.17 62.13
Xinjizha 12.09 31.00 67.85 188.28 22.45 23.78 71.16
average 9.94 316.06 81.9 28577.13 33.05 53.78 288.61
standard deviation 3.39 367.53 28.2 68194.95 14.14 45.36 363.60
coefficient of variation/% 0.34 1.16 0.34 2.39 0.43 0.84 1.26
Baiyangdian Lake Wangjiazhai 9.50 0.04 69.00 0.30 25.00 23.00 68.00
Guangdianzhangzhuang 10.50 0.03 69.00 0.20 25.00 22.00 61.00
Zaolinzhuang 10.30 0.05 64.00 0.12 22.00 20.00 52.00
Guolikou 24.80 0.04 59.00 0.13 23.00 21.00 56.00
Duancunshang 7.90 0.04 58.00 0.12 20.00 19.00 53.00
Datianzhuang 12.30 0.04 69.00 0.27 24.00 25.00 80.00
Caiputai 4.70 0.06 64.00 0.12 21.00 20.00 58.00
Quantou 10.80 0.03 84.00 0.26 26.00 29.00 85.00
Dazhangzhuang 10.80 0.05 67.00 0.18 22.00 23.00 67.00
Nanliuzhuang 9.30 0.06 83.00 0.90 30.00 35.00 112.00
average 11.09 0.04 68.60 0.26 23.80 23.70 69.20
standard deviation 5.24 0.01 8.78 0.23 2.90 4.92 18.65
coefficient of variation/% 0.47 0.24 0.13 0.90 0.12 0.21 0.27
Estuary Haihe Estuary 11.84 790.50 102.63 548.47 157.82 56.42 217.98
Duliujian Estuary 12.35 49.50 84.92 216.01 31.08 36.66 114.87
Ziyaxin Estuary 15.28 61.50 88.25 187.25 31.73 34.82 102.92
Zhangweinan Estuary 12.09 31.00 67.85 188.28 22.45 23.78 71.16
Tuhai Estuary 9.82 21.50 61.95 171.10 18.71 19.28 55.28
average 12.28 190.80 81.12 262.22 52.36 34.19 112.44
standard deviation 1.95 335.61 16.37 160.83 59.22 14.42 63.65
coefficient of variation/% 0.16 1.76 0.20 0.61 1.13 0.42 0.57
Tab.3  Concentrations of heavy metals in sediments of typical eco-units
A1 B1 B2 B3 C1 C2 C3 C4 C5 C6 C7
As 24.80 29.90
Hg 1135.50 1.40 0.50 6.20
Cr 152.70 1779.00 205.00 73.70 19.10 23.40
Cd 195765.80 3.4.00 0.30 3.80 25320.00 8.40 2.10 4.30 1.10
Pb 157.80 220.00 98.00 113.00 62.00 3600.00 75.30 85.00 98.50 189.00 68.40
Cu 178.60 1249.00 129.90 54.60 6495.00 35.00 280.00 90.10 420.80 48.20
Zn 1076.30 1337.00 1142.00 83.10 439.00 101.70 221.00 305.00 708.80 245.20
Reference This study [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
Tab.4  Maximum heavy metal concentrations in the sediments in this study and in other literature
Fig.4  Average heavy metal concentrations in typical eco-units

Note: LS= Luanhe sediment, ZS= Zhangweinanhe sediment, BS= Baiyangdian sediment, and ES= Estuary sediment

River site E r i of seven heavy metals RI
As Hg Cr Cd Pb Cu Zn
Luanhe River Guotaizi 11.35 7.50 7.07 2.14 3.45 0.72 0.38 32.60
Guojiatun 9.04 7.50 5.80 2.14 3.73 0.65 0.31 29.18
Boluonuo 34.30 150.00 13.15 20.71 8.11 3.48 1.35 231.11
Zhangbaiwan 12.13 15.00 5.32 2.86 3.50 0.96 0.40 40.18
Sandaohezi 9.78 15.00 28.34 9.29 1.89 7.44 1.54 73.28
Xiahenan 17.13 7.50 6.66 5.71 3.89 1.16 0.64 42.69
Hanjiaying 10.57 15.00 11.51 10.71 1.83 17.86 1.64 69.12
Wulieheshang 30.17 52.50 18.51 16.43 6.94 4.58 1.49 130.63
Wuliehexia 33.26 1042.50 19.95 26.43 7.93 5.69 2.38 1138.14
Baohekou 56.09 37.50 16.29 8.57 5.55 3.46 1.02 128.47
average 22.38 135.00 13.26 10.50 4.68 4.60 1.12 191.54 (moderate)
Zhangweinan River Yuecheng 47.09 15750.00 11.97 10201.43 4.59 2.32 0.90 26018.29
Xiaonanhai 36.78 63000.00 12.23 26448.57 8.25 6.01 1.69 89513.53
Xinxiang 32.52 851625.00 22.51 13983273.57 8.64 14.89 15.90 14834993.03
Weihui 50.35 199500.00 15.61 1948017.86 6.73 4.30 3.91 2147598.76
Longwangmiao 66.43 352875.00 24.15 308530.71 13.21 8.85 8.49 661526.85
Guantao 17.22 121500.00 10.54 29421.43 4.44 1.65 1.25 150956.52
Dezhou 42.70 268875.00 12.03 10447.86 5.40 2.62 0.92 279386.52
Xinjizha 52.57 23250.00 12.58 13448.57 4.76 2.38 1.05 36771.91
average 43.21 237046.88 15.20 2041223.75 7.00 5.38 4.26 2278345.68(very high)
Baiyangdian Lake Wangjiazhai 41.30 30.00 12.80 21.43 5.30 2.30 1.00 114.14
Guangdianzhangzhuang 45.65 22.50 12.80 14.29 5.30 2.20 0.90 103.64
Zaolinzhuang 44.78 37.50 11.87 8.57 4.66 2.00 0.77 110.16
Guolikou 107.83 30.00 10.95 9.29 4.87 2.10 0.83 165.86
Duancunshang 34.35 30.00 10.76 8.57 4.24 1.90 0.78 90.60
Datianzhuang 53.48 30.00 12.80 19.29 5.08 2.50 1.18 124.33
Caiputai 20.43 45.00 11.87 8.57 4.45 2.00 0.86 93.19
Quantou 46.96 22.50 15.58 18.57 5.51 2.90 1.26 113.28
Dazhangzhuang 46.96 37.50 12.43 12.86 4.66 2.30 0.99 117.69
Nanliuzhuang 40.43 45.00 15.40 64.29 6.36 3.50 1.65 176.63
average 48.22 33.00 12.73 18.57 5.04 2.37 1.02 120.95 (moderate)
Estuary Haihe estuary 51.48 592875.00 19.04 39176.43 33.44 5.64 3.22 632164.25
Duliujian estuary 53.70 37125.00 15.76 15429.29 6.58 3.67 1.70 52635.68
Ziyaxin estuary 66.43 46125.00 16.37 13375.00 6.72 3.48 1.52 59594.53
Zhangweinan estuary 52.57 23250.00 12.59 13448.57 4.76 2.38 1.05 36771.91
Tuhai estuary 42.70 16125.00 11.49 12221.43 3.96 1.93 0.82 28407.33
average 53.37 143100.00 15.05 18730.14 11.09 3.42 1.66 161914.74 (very high)
total average 39.96 79198.64 13.84 497688.83 6.33 3.93 1.93 576953.46
Tab.5  Eco-risk factor ( E r i ) and potential eco-risk index (RI) of heavy metals in sediments
1 US EPA. Guidelines for ecological risk assessment. EPA/630/R-95/002F. Risk Assessment Forum, Environmental Protection Agency Washington, DC, 1998
2 Río  L D, Gracia  F J. Erosion risk assessment of active coastal cliffs in temperate  environments.  Geomorphology,  2009,  112(1–2):  82–95
3 Chapman  E E V, Dave  G, Murimboh  J D. Ecotoxicological risk assessment of undisturbed metal contaminated soil at two remote lighthouse sites. Ecotoxicology and Environmental Safety, 2010, 73(5): 961–969
https://doi.org/10.1016/j.ecoenv.2010.02.014 pmid: 20189647
4 US EPA. Proposed guidelines for carcinogen risk assessment. Federal Register, 1996, 61: 16960–18011
5 NRC (National Research Council). Risk assessment in the federal government: managing the process. Washington, DC: National Academy Press, 1983
6 Yang  Z F, Liu  J L, Sun  T, Cui  B S. Environmental flows in basins. Beijing: Science Press, 2006 (in Chinese)
7 Liu  H J, Luo  Y Q, Wen  J B, Zhang  Z M, Feng  J H, Tao  W Q. Pest risk assessment of Dendroctonus valens, Hyphantria cunea and Apriona swainsoni in Beijing. Frontiers of Forestry in China, 2006, 1(3): 328–335
https://doi.org/10.1007/s11461-006-0025-5
8 Liu  J L, Li  Y L, Zhang  B, Cao  J L, Cao  Z G, Domagalski  J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology (London, England), 2009, 18(6): 748–758
https://doi.org/10.1007/s10646-009-0345-y pmid: 19499329
9 Wang  L L, Yang  Z F, Niu  J F, Wang  J Y. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world. Journal of Hazardous Materials, 2009, 169(1–3): 460–465
https://doi.org/10.1016/j.jhazmat.2009.03.125 pmid: 19398155
10 Li  Y L, Liu  J L, Cao  Z G, Lin  C, Yang  Z F. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. Environmental Monitoring and Assessment, 2010, 163(1–4): 1–13
https://doi.org/10.1007/s10661-009-0811-2 pmid: 19255862
11 Cao  Z G, Liu  J L, Li  Y L, Ma  M Y. Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in Water and Sediments of the Luan River, China. Toxicological and Environmental Chemistry, 2010, 92(4): 707–720
https://doi.org/10.1080/02772240902984446
12 Cao  Z G, Liu  J L, Luan  Y, Li  Y L, Ma  M Y, Xu  J, Han  S L. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology (London, England), 2010, 19(5): 827–837
https://doi.org/10.1007/s10646-010-0464-5 pmid: 20151190
13 Su  L Y, Liu  J L, Christensen  P. Spatial distribution and ecological risk assessment of metals in sediments of Baiyangdian wetland ecosystem. Ecotoxicology (London, England), 2011, 20(5): 1107–1116
https://doi.org/10.1007/s10646-011-0616-2 pmid: 21380531
14 Liu  J L, Chen  Q Y, Li  Y L. Ecological risk assessment of water environment for Luanhe River Basin based on relative risk model. Ecotoxicology (London, England), 2010, 19(8): 1400–1415
https://doi.org/10.1007/s10646-010-0525-9 pmid: 20683654
15 Xia  J, Feng  H L, Zhan  C S, Niu  C W. Determination of a reasonable percentage for ecological water-use in the Haihe River Basin, China. Pedosphere, 2006, 16(1): 33–42
https://doi.org/10.1016/S1002-0160(06)60023-4
16 Wan  Y, Hu  J Y, Liu  J L, An  W, Tao  S, Jia  Z. Fate of DDT-related compounds in Bohai Bay and its adjacent Haihe Basin, North China. Marine Pollution Bulletin, 2005, 50(4): 439–445
https://doi.org/10.1016/j.marpolbul.2004.11.037 pmid: 15823306
17 Tessier  A, Campbell  P G C, Bisson  M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
18 Hakanson  L. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 1980, 14(8): 975–1001
https://doi.org/10.1016/0043-1354(80)90143-8
19 Wang  B, Yu  G, Huang  J, Wang  T, Hu  H Y. Probabilistic ecological risk assessment of DDTs in the Bohai Bay based on a food web bioaccumulation model. Science of the Total Environment, 2011, 409(3): 495–502
https://doi.org/10.1016/j.scitotenv.2010.10.039 pmid: 21075423
20 Liu  H L, Li  L Q, Yin  C Q, Shan  B Q. Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences (China), 2008, 20(4): 390–397
https://doi.org/10.1016/S1001-0742(08)62069-0 pmid: 18575121
21 Yang  Z F, Wang  Y, Shen  Z Y, Niu  J F, Tang  Z W. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China.  Journal  of  Hazardous  Materials,  2009,  166(2–3):  1186–1194
https://doi.org/10.1016/j.jhazmat.2008.12.034 pmid: 19179000
22 Zhang  H, Shan  B Q. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China. Science of the Total Environment, 2008, 399(1–3): 113–120
https://doi.org/10.1016/j.scitotenv.2008.03.036 pmid: 18479736
23 Dauvalter  V, Rognerud  S. Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 2001, 42(1): 9–18
https://doi.org/10.1016/S0045-6535(00)00094-1 pmid: 11142923
24 Arnason  J G, Fletcher  B A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environmental Pollution, 2003, 123(3): 383–391
https://doi.org/10.1016/S0269-7491(03)00015-0 pmid: 12667766
25 Singh  K P, Mohan  D, Singh  V K, Malik  A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology (Amsterdam), 2005, 312(1–4): 14–27
https://doi.org/10.1016/j.jhydrol.2005.01.021
26 Tang  C W, Carman  C I, Zhang  G, Shin  P K S, Qian  P Y, Li  X D. The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong. Marine Pollution Bulletin, 2008, 57(6–12): 816–825
27 Farkas  A, Erratico  C, Viganò  L. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 2007, 68(4): 761–768
https://doi.org/10.1016/j.chemosphere.2006.12.099 pmid: 17307216
28 Olivares-Rieumont  S, de la Rosa  D, Lima  L, Graham  D W, D’ Alessandro  K, Borroto  J, Martínez  F, Sánchez  J. Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Research, 2005, 39(16): 3945–3953
https://doi.org/10.1016/j.watres.2005.07.011 pmid: 16111734
29 Martin  C W. Heavy metal storage in near channel sediments of the Lahn River, Germany. Geomorphology, 2004, 61(3–4): 275–285
https://doi.org/10.1016/j.geomorph.2004.01.003
30 Liu  W X, Luan  Z K, Tang  H X. Comparative assessment of heavy metal pollution in surface sediment of river and lake with multivariate face graph. Environmental Chemistry, 1997, 1: 23–29
[1] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[2] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[3] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[4] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[5] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[6] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[7] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[8] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[9] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[10] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[15] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed