Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 835-844    https://doi.org/10.1007/s11783-014-0695-4
RESEARCH ARTICLE
Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2
Leila KARIMNEZHAD1,2,Mohammad HAGHIGHI1,2,*(),Esmaeil FATEHIFAR1,3
1. Chemical Engineering Faculty, Sahand University of Technology, P O Box 51335-1996, Sahand New Town, Tabriz, Iran
2. Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P O Box 51335-1996, Sahand New Town, Tabriz, Iran
3. Environmental Engineering Research Center (EERC), Sahand University of Technology, P O Box 51335-1996, Sahand New Town, Tabriz, Iran
 Download: PDF(1315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of activated carbons with high surface area were prepared from walnut shell using chemical activation with ZnCl2. In this research the carbonization stage was carried out at 500°C. The performance of the synthesized carbons evaluated in adsorption of benzene and toluene from waste gas. The influence of impregnation ratio on the characteristics of synthesized activated carbons as well as their adsorption capacity was investigated. The ratio of activation agent to walnut shell was selected in the range of 0.5–2.0 wt/wt. The synthesized activated carbons were characterized using XRD, SEM, BET and FTIR techniques. The highest activated carbon production yield was obtained at impregnation ratio of 1.5 wt/wt. The XRD analysis illustrated that peaks intensity decreased with increasing impregnation ratio showing that amorphous property of samples was increased. The SEM analysis revealed successful pore development in synthesized activated carbons obtained at high impregnation ratios. The surface area of the activated carbons increased with increasing impregnation ratio and its maximum value reached 2643 m2?g-1 at impregnation ratio of 2/1. FTIR analysis indicated that the relative amount of different acidic surface groups on synthesized carbons was a function of impregnation ratio. Experimental results for benzene and toluene adsorption showed a high potential of employing synthesized impregnated activated carbon for treatment of waste gas. Generally, the amount of VOC adsorbed on the surface was affected by physicochemical properties of synthesized activated carbons.

Keywords Chemical activation      activated carbon      textural characterization      adsorption      benzene      toluene     
Corresponding Author(s): Mohammad HAGHIGHI   
Online First Date: 09 May 2014    Issue Date: 17 November 2014
 Cite this article:   
Leila KARIMNEZHAD,Mohammad HAGHIGHI,Esmaeil FATEHIFAR. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2[J]. Front. Environ. Sci. Eng., 2014, 8(6): 835-844.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0695-4
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/835
Fig.1  Experimental setup for testing adsorption performance of synthesized activated carbon for VOC abatement
Fig.2  Production yield of synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.3  Production yield of synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.4  SEM images of walnut shell (a) and synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt) (b) AA/DP= 1/1, (c) AA/DP= 2/1
Fig.5  External surface pore size histogram of synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt) (a) AA/DP= 1/1 and (b) AA/DP= 2/1
Fig.6  BET surface area of synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.7  FTIR spectrum of synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.8  Amount of benzene adsorbed on synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.9  Amount of toluene adsorbed on synthesized activated carbons via ZnCl2 activation at various impregnation ratios of activation agent to dry precursor (wt/wt)
Fig.10  Effect of toluene concentration in polluted air on amount of adsorption capacity of synthesized activated carbons via ZnCl2 activation at impregnation ratio of (activation agent)/(dry precursor) = 2 (wt/wt)
1 Cai C, Geng F, Tie X, Yu Q, An J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, 2010, 44(38): 5005–5014
https://doi.org/10.1016/j.atmosenv.2010.07.059
2 Caselli M, de Gennaro G, Marzocca A, Trizio L, Tutino M. Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere, 2010, 81(3): 306–311
https://doi.org/10.1016/j.chemosphere.2010.07.033 pmid: 20696463
3 Lau A K H, Yuan Z, Yu J Z, Louie P K K. Source apportionment of ambient volatile organic compounds in Hong Kong. Science of the Total Environment, 2010, 408(19): 4138–4149
https://doi.org/10.1016/j.scitotenv.2010.05.025 pmid: 20554313
4 Yuan B, Shao M, Lu S, Wang B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmospheric Environment, 2010, 44(15): 1919–1926
https://doi.org/10.1016/j.atmosenv.2010.02.014
5 Abbasi Z, Haghighi M, Fatehifar E, Rahemi N. Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and Sol-Gel methods used for total oxidation of toluene. Asia-Pacific Journal of Chemical Engineering, 2012, 7(6): 868–876
https://doi.org/10.1002/apj.652
6 Cheremisinoff N P, Rosenfeld P. Guidelines for Cleaner Production. Handbook of Pollution Prevention and Cleaner Production–Best Practices in The Petroleum Industry. Oxford: William Andrew Publishing, 2009, 179–225
7 Wang J, Zhang P, Qi J Q, Yao P J. Silicon-based micro-gas sensors for detecting formaldehyde. Sensors and Actuators. B, Chemical, 2009, 136(2): 399–404
https://doi.org/10.1016/j.snb.2008.12.056
8 Jamalzadeh Z, Haghighi M, Asgari N. Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures. Frontiers of Environmental Science & Engineering, 2013, 7(3): 365–381
https://doi.org/10.1007/s11783-013-0520-5
9 Abbasi Z, Haghighi M, Fatehifar E, Saedy S. Synthesis and physicochemical characterization of nanostructured Pt/CeO2 catalyst used for total oxidation of toluene. International Journal of Chemical Reactor Engineering, 2011, 9(A45): 1–19
10 Abbasi Z, Fatehifar E, Soltan Mohammadzadeh J S, Haghighi M, Aghahoseini S. Selection of Optimum Method for Abatements of VOCs from Waste Gas Streams: Non-Destructive Methods. Iranian Journal of Chemical Engineering, 2010, 8(44): 30–40
11 Gratuito M K B, Panyathanmaporn T, Chumnanklang R A, Sirinuntawittaya N, Dutta A. Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresource Technology, 2008, 99(11): 4887–4895
https://doi.org/10.1016/j.biortech.2007.09.042 pmid: 17993271
12 Ip A W M, Barford J P, McKay G. Production and comparison of high surface area bamboo derived active carbons. Bioresource Technology, 2008, 99(18): 8909–8916
https://doi.org/10.1016/j.biortech.2008.04.076 pmid: 18572403
13 Jaramillo J, Gómez-Serrano V, álvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. Journal of Hazardous Materials, 2009, 161(2-3): 670–676
https://doi.org/10.1016/j.jhazmat.2008.04.009 pmid: 18495336
14 Morales-Torres S, Maldonado-Hódar F J, Pérez-Cadenas A F, Carrasco-Marín F. Design of low-temperature Pt-carbon combustion catalysts for VOC’s treatments. Journal of Hazardous Materials, 2010, 183(1-3): 814–822
https://doi.org/10.1016/j.jhazmat.2010.07.100 pmid: 20728988
15 Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767
https://doi.org/10.1016/j.carbon.2005.02.023
16 Kim K J, Ahn H G. The adsorption and desorption characteristics of a binary component system of toluene and methylethylketone on activated carbon modified with phosphoric acid. Carbon, 2010, 48(8): 2198–2202
https://doi.org/10.1016/j.carbon.2010.02.021
17 Lillo-Ródenas M A, Fletcher A J, Thomas K M, Cazorla-Amorós D, Linares-Solano A. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 2006, 44(8): 1455–1463
https://doi.org/10.1016/j.carbon.2005.12.001
18 Tao Y, Wu C Y, Mazyck D W. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration. Chemosphere, 2006, 65(1): 35–42
https://doi.org/10.1016/j.chemosphere.2006.03.019 pmid: 16630641
19 Pei J, Zhang J S. Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Building and Environment, 2012, 48(0): 66–76
https://doi.org/10.1016/j.buildenv.2011.08.005
20 Lemus J, Martin-Martinez M, Palomar J, Gomez-Sainero L, Gilarranz M A, Rodriguez J J. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chemical Engineering Journal, 2012, 211–212(0): 246–254
https://doi.org/10.1016/j.cej.2012.09.021
21 Le Cloirec P. Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compound (VOCs): A Specific Review. Chinese Journal of Chemical Engineering, 2012, 20(3): 461–468
https://doi.org/10.1016/S1004-9541(11)60207-3
22 Li K, Zheng Z, Li Y. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation. Journal of Hazardous Materials, 2010, 181(1-3): 440–447
https://doi.org/10.1016/j.jhazmat.2010.05.030 pmid: 20542631
23 Reffas A, Bernardet V, David B, Reinert L, Lehocine M B, Dubois M, Batisse N, Duclaux L. Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, 2010, 175(1-3): 779–788
https://doi.org/10.1016/j.jhazmat.2009.10.076 pmid: 19942347
24 Tham Y J, Latif P A, Abdullah A M, Shamala-Devi A, Taufiq-Yap Y H. Performances of toluene removal by activated carbon derived from durian shell. Bioresource Technology, 2011, 102(2): 724–728
https://doi.org/10.1016/j.biortech.2010.08.068 pmid: 20884200
25 Wen Q, Li C, Cai Z, Zhang W, Gao H, Chen L, Zeng G, Shu X, Zhao Y. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology, 2011, 102(2): 942–947
https://doi.org/10.1016/j.biortech.2010.09.042 pmid: 20933403
26 Kim K J, Kang C S, You Y J, Chung M C, Woo M W, Jeong W J, Park N C, Ahn H G. Adsorption-desorption characteristics of VOCs over impregnated activated carbons. Catalysis Today, 2006, 111(3–4): 223–228
https://doi.org/10.1016/j.cattod.2005.10.030
27 Aygün A, Yenisoy-Karakas S, Duman I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 2003, 66(2–3): 189–195
https://doi.org/10.1016/j.micromeso.2003.08.028
28 Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 2009, 164(2-3): 473–482
https://doi.org/10.1016/j.jhazmat.2008.08.025 pmid: 18818013
29 Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F, 0. Horikawa T, Takeda I, Muroyama K, Nasir Ani F. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 2002, 40(13): 2381–2386
https://doi.org/10.1016/S0008-6223(02)00118-5
30 Toles C A, Marshall W E, Johns M M. Surface functional groups on acid-activated nutshell carbons. Carbon, 1999, 37(8): 1207–1214
https://doi.org/10.1016/S0008-6223(98)00315-7
31 Wang K, Li C, San H, Do D D. The importance of finite adsorption kinetics in the sorption of hydrocarbon gases onto a nutshell-derived activated carbon. Chemical Engineering Science, 2007, 62(23): 6836–6842
https://doi.org/10.1016/j.ces.2007.08.072
32 Klasson K T, Wartelle L H, Lima I M, Marshall W E, Akin D E. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene. Bioresource Technology, 2009, 100(21): 5045–5050
https://doi.org/10.1016/j.biortech.2009.02.068 pmid: 19540755
33 Bansode R R, Losso J N, Marshall W E, Rao R M, Portier R J. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bioresource Technology, 2004, 94(2): 129–135
https://doi.org/10.1016/j.biortech.2003.12.009 pmid: 15158504
34 Guo Y, Rockstraw D A. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresource Technology, 2007, 98(8): 1513–1521
https://doi.org/10.1016/j.biortech.2006.06.027 pmid: 16973352
35 Martínez M L, Torres M M, Guzmán C A, Maestri D M. Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 2006, 23(1): 23–28
https://doi.org/10.1016/j.indcrop.2005.03.001
36 Schr?der E, Thomauske K, Weber C, Hornung A, Tumiatti V. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis, 2007, 79(1–2): 106–111
https://doi.org/10.1016/j.jaap.2006.10.015
37 Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production–A review. Renewable & Sustainable Energy Reviews, 2007, 11(9): 1966–2005
https://doi.org/10.1016/j.rser.2006.03.013
38 Adinata D, Wan Daud W M A, Aroua M K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 2007, 98(1): 145–149
https://doi.org/10.1016/j.biortech.2005.11.006 pmid: 16380249
39 Deng H, Li G, Yang H, Tang J, Tang J. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 2010, 163(3): 373–381
https://doi.org/10.1016/j.cej.2010.08.019
40 Mohamed A R, Mohammadi M, Darzi G N. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable & Sustainable Energy Reviews, 2010, 14(6): 1591–1599
https://doi.org/10.1016/j.rser.2010.01.024
41 U?ar S, Erdem M, Tay T, Karag?z S. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science, 2009, 255(21): 8890–8896
https://doi.org/10.1016/j.apsusc.2009.06.080
42 Yorgun S, Vural N, Demiral H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 2009, 122(1–3): 189–194
https://doi.org/10.1016/j.micromeso.2009.02.032
43 Wang T, Tan S, Liang C. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon, 2009, 47(7): 1880–1883
https://doi.org/10.1016/j.carbon.2009.03.035
44 Lillo-Ródenas M A, Carratalá-Abril J, Cazorla-Amorós D, Linares-Solano A. Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations. Fuel Processing Technology, 2002, 77–78: 331–336
https://doi.org/10.1016/S0378-3820(02)00073-5
45 Yue Z, Mangun C L, Economy J. Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers. Carbon, 2002, 40(8): 1181–1191
https://doi.org/10.1016/S0008-6223(01)00268-8
46 Yue Z, Economy J, Mangun C L. Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon, 2003, 41(9): 1809–1817
https://doi.org/10.1016/S0008-6223(03)00151-9
47 Trevi?o-Cordero H, Juárez-Aguilar L G, Mendoza-Castillo D I, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán M A. Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Industrial Crops and Products, 2013, 42(0): 315–323
https://doi.org/10.1016/j.indcrop.2012.05.029
48 Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 2013, 87(0): 401–408
https://doi.org/10.1016/j.electacta.2012.09.082
49 Qian Q, Machida M, Tatsumoto H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresource Technology, 2007, 98(2): 353–360
https://doi.org/10.1016/j.biortech.2005.12.023 pmid: 16527480
50 Lin Q, Jiang Y, Geng J, Qian Y. Removal of organic impurities with activated carbons for ultra-pure hydrogen peroxide preparation. Chemical Engineering Journal, 2008, 139(2): 264–271
https://doi.org/10.1016/j.cej.2007.07.091
51 Sun Y, Yue Q, Gao B, Huang L, Xu X, Li Q. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor. Chemical Engineering Journal, 2012, 181–182(0): 790–797
https://doi.org/10.1016/j.cej.2011.11.098
52 Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 2008, 140(1–3): 32–42
https://doi.org/10.1016/j.cej.2007.08.032
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[4] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[5] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[6] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[7] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[8] Minxiang Wang, Lili Yang, Xiaoyun Liu, Zheng Wang, Guorui Liu, Minghui Zheng. Hexachlorobutadiene emissions from typical chemical plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 60-.
[9] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[10] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[11] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[12] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[13] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[14] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[15] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed