Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    0, Vol. Issue () : 649-664    https://doi.org/10.1007/s11783-014-0702-9
RESEARCH ARTICLE
Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China
Yuan XU,Ruqin XIE,Yuqiu WANG(),Jian SHA
College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(1336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fuzzy comprehensive assessment and multivariate statistical techniques including cluster analysis, discriminant analysis, principal component analysis, and factor analysis were applied to analyze the water quality status of Yuqiao Reservoir Basin, North China, for assessing its spatio-temporal variations and identifying potential pollution sources. In this paper, we considered data for 14 water quality parameters collected during 1990–2004 at 7 water quality monitoring sites. The results of fuzzy comprehensive assessment revealed that water quality in Yuqiao Reservoir Basin showed a downtrend from 1990 to 2001 with fluctuation, and a slowly upward trend after 2001. The major water quality belonged to Class III and IV. Besides, hierarchical cluster analysis divided 7 monitoring sites into two groups (Group A and B), and 12 months into three periods (low-flow (LF), normal-flow (NF), and high-flow (HF) period). Temp, pH, SS, T-har, DO, NO3-N and TP were identified as significant variables affecting spatial variations, and Temp, pH and NO2-N were identified as significant variables affecting temporal variations by discriminant analysis. Factor analysis identified four latent pollution sources for water quality variations: nutrient pollution, organic pollution, inorganic pollution, and natural pollution. Moreover, for Group A regions, pollution inputs mainly came from domestic wastewater and industrial sewage. For Group B regions, it is more likely that water pollution resulted from the combined effects of domestic wastewater, hospital wastewater, agriculture runoff, and fishpond discharge, as well as the incoming water from upstream.

Keywords Fuzzy comprehensive assessment      multivariate statistical analysis      water quality     
Corresponding Author(s): Yuqiu WANG   
Online First Date: 25 April 2014    Issue Date: 25 June 2015
 Cite this article:   
Yuan XU,Ruqin XIE,Yuqiu WANG, et al. Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China[J]. Front. Environ. Sci. Eng., 0, (): 649-664.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0702-9
https://academic.hep.com.cn/fese/EN/Y0/V/I/649
Fig.1  Map of study area and water quality monitoring sites (S1-S7) in Yuqiao Reservoir Basin
parameter abbreviation unit analytical method
temperature temp °C mercury thermometer
pH pH pH unit glass electrode
suspended solids SS mg·L-1 gravimetric
total hardness T-har CaCO3 mg·L-1 titrimeter
chloride Cl- mg·L-1 spectrophotometric
dissolved oxygen DO mg·L-1 iodometric
permanganate index CODMn mg·L-1 acidic potassium permanganate
5-Day biochemical oxygen demand BOD5 mg·L-1 dilution and seeding
ammonia-nitrogen NH3-N mg·L-1 Nessler’s reagent colorimetric
nitrite-nitrogen NO2-N mg·L-1 spectrophotometric
nitrate-nitrogen NO3-N mg·L-1 spectrophotometric with phenol disulfonic acid
total nitrogen TN mg·L-1 alkaline potassium persulfate digestion-UV spectrophotometric
total phosphorus TP mg·L-1 ammonium molybdate spectrophotometric
chlorophyll a Chl-a mg·L-1 spectrophotometric
Tab.1  Water quality parameters, abbreviation, units and analytical methods used during 1990~2004 for the Yuqiao Reservoir Basin
parameters S1 S2 S3 S4 S5 S6 S7
temp mean 14.759 14.563 14.513 14.488 13.661 14.109 13.138
S.E. 1.077 1.098 1.105 1.111 1.049 1.066 1.019
S.D. 9.142 9.319 9.374 9.428 8.899 9.042 8.650
pH mean 8.342 8.527 8.527 8.498 8.222 8.094 8.200
S.E. 0.035 0.035 0.035 0.034 0.029 0.029 0.026
S.D. 0.296 0.293 0.293 0.291 0.248 0.248 0.218
SS mean 6.763 4.588 4.999 5.471 9.131 8.260 8.816
S.E. 0.600 0.369 0.417 0.520 0.916 0.843 0.888
S.D. 5.088 3.135 3.537 4.409 7.776 7.156 7.534
T-har mean 107.768 98.020 97.991 100.229 124.936 114.860 120.449
S.E. 3.262 2.830 2.653 2.622 3.557 3.012 3.304
S.D. 27.683 24.013 22.512 22.248 30.185 25.554 28.035
Cl- mean 21.454 21.263 21.028 21.338 22.726 25.965 22.574
S.E. 0.669 0.578 0.558 0.582 0.607 0.652 0.613
S.D. 5.677 4.904 4.735 4.938 5.151 5.532 5.201
DO mean 9.661 9.125 9.373 9.172 10.069 9.782 10.017
S.E. 0.325 0.292 0.317 0.324 0.300 0.284 0.300
S.D. 2.756 2.480 2.690 2.747 2.547 2.408 2.544
CODMn mean 3.673 3.730 3.708 3.815 3.335 2.657 3.366
S.E. 0.183 0.158 0.167 0.175 0.152 0.142 0.156
S.D. 1.552 1.345 1.413 1.483 1.290 1.205 1.327
BOD5 mean 1.746 1.716 1.727 1.950 2.146 1.979 1.979
S.E. 0.111 0.090 0.091 0.114 0.125 0.112 0.117
S.D. 0.939 0.767 0.770 0.968 1.061 0.952 0.993
NH3-N mean 0.191 0.144 0.154 0.194 0.243 0.243 0.274
S.E. 0.021 0.017 0.019 0.025 0.022 0.023 0.024
S.D. 0.180 0.148 0.158 0.208 0.183 0.198 0.203
NO2-N mean 0.047 0.019 0.022 0.036 0.056 0.048 0.055
S.E. 0.006 0.002 0.002 0.004 0.005 0.004 0.004
S.D. 0.048 0.015 0.019 0.038 0.041 0.033 0.038
NO3-N mean 1.418 0.776 0.919 1.119 1.494 2.221 1.696
S.E. 0.122 0.061 0.073 0.092 0.135 0.192 0.149
S.D. 1.031 0.517 0.620 0.781 1.142 1.625 1.261
TN mean 2.406 1.831 1.975 2.111 2.389 3.335 2.564
S.E. 0.169 0.109 0.121 0.122 0.152 0.239 0.168
S.D. 1.432 0.929 1.024 1.035 1.290 2.028 1.427
TP mean 0.044 0.040 0.041 0.044 0.083 0.071 0.120
S.E. 0.002 0.004 0.003 0.004 0.005 0.006 0.010
S.D. 0.017 0.033 0.030 0.037 0.044 0.055 0.089
Chl-a mean 7.643 7.849 8.756 10.405 7.713 5.342 10.433
S.E. 0.867 0.827 0.893 1.111 0.857 0.579 1.158
S.D. 7.355 7.017 7.580 9.426 7.268 4.910 9.830
Tab.2  Univariate statistics corresponding to the total samples analyzed
parameters
temp/°C ambient water temperature change caused by man-made reasons shall be limited at:maximum weekly average temperature rise≤1;maximum weekly average temperature drop≤2.
pH 6–9
DO≥ 7.5 6 5 3 2
CODMn 2 4 6 10 15
BOD5 3 3 4 6 10
NH3-N≤ 0.15 0.5 1.0 1.5 2.0
TN≤ 0.2 0.5 1.0 1.5 2.0
TP (reservoir)≤ 0.01 0.025 0.05 0.1 0.2
TP (river)≤ 0.02 0.1 0.2 0.3 0.4
Tab.3  Environmental guideline of Environment quality standards for surface water, China (GB3838-2002) (units: mg·L-1)
year S1 S2 S3 S4 S5 S6 S7
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
Tab.4  Results of water quality assessment
Fig.2  Dendrogram showing spatial clustering of monitoring sites (S1-S7).
Fig.3  Dendrogram showing temporal clustering of monitoring periods
modes DF R Wilks’ Lambda Chi-Square p-level
standard 1 0.715552 0.487986 355.1474 0.00
forward 1 0.715546 0.487994 355.4980 0.00
Backward 1 0.701045 0.508536 337.0955 0.00
Tab.5  Results of spatial-DA for spatial variation
parameters standard mode forward stepwise mode backward stepwise mode
Group A Group B Group A Group B Group A group B
temp -1.149 -1.381 -1.038 -1.270 -1.421 -1.634
pH 198.965 203.962 197.784 202.777 181.884 187.065
SS 1.177 1.072 1.301 1.196 1.212 1.114
T-har 0.676 0.656 0.699 0.679 0.877 0.853
Cl- 1.134 1.081 1.093 1.039
DO -2.707 -3.192 -2.832 -3.318 -3.268 -3.739
CODMn -5.301 -4.991 -5.789 -5.481
BOD5 6.530 6.003 7.293 6.769
NH3-N 29.729 31.325 30.611 32.210
NO2-N 96.957 97.346
NO3-N 10.676 10.195 10.941 10.461 9.471 8.978
TN -2.142 -2.374 -1.392 -1.621
TP -9.537 -32.705 -9.143 -32.311 -9.480 -32.434
Chl-a -0.622 -0.647 -0.574 -0.598
Constant -860.234 -886.832 -856.006 -882.570 -784.145 -813.820
Tab.6  Classification functions coefficients for discriminant analysis of spatial variation
monitoring sites percent correct regions assigned by DA
Group A Group B
standard mode
group A 80.37037 434 106
group B 89.30556 77 643
total 85.47619 511 749
forward stepwise mode
group A 80.37037 434 106
group B 89.30556 77 643
total 85.47619 511 749
backward stepwise mode
group A 78.70370 425 115
group B 89.02778 79 641
total 84.60317 504 756
Tab.7  Classification matrix for discriminant analysis of spatial variation
Fig.4  Spatial variations: (a) Temp, (b)pH, (c) SS, (d) T-har, (e) DO, (f) NO3-N and(g) TP in Yuqiao Reservoir Basin
modes DF R Wilks’ Lambda Chi-square p-level
standard 1 0.952207 0.080467 1246.093 0.00
2 0.370886 0.862444 73.179 0.00
forward 1 0.952106 0.080635 1247.583 0.00
2 0.370878 0.862450 73.323 0.00
backward 1 0.947935 0.094798 1178.006 0.00
2 0.255527 0.934706 33.762 0.00
Tab.8  Results of temporal-DA for temporal variation
parameters standard mode forward stepwise mode backward stepwise mode
LF NF HF LF NF HF LF NF HF
temp -1.953 -0.791 0.712 -2.094 -0.938 0.557 -2.485 -1.342 0.055
pH 192.051 191.768 187.340 185.692 185.213 180.539 124.757 125.104 121.876
SS 1.376 1.462 1.558 1.176 1.256 1.344
T-har 0.764 0.763 0.740 0.813 0.813 0.792
Cl- 1.225 1.320 1.401 1.352 1.451 1.537
DO -1.838 -1.838 -1.566 -1.300 -1.285 -0.993
CODMn -5.895 -6.085 -6.328
BOD5 7.068 6.549 6.809 5.445 4.872 5.060
NH3-N 18.472 17.332 21.009 18.532 17.420 21.144
NO2-N 158.338 159.912 121.948 175.914 178.160 141.095 400.960 399.698 366.347
NO3-N 12.830 12.426 11.663 11.811 11.399 10.635
TN -1.504 -1.526 -1.544
TP 44.398 36.841 37.966 36.686 28.862 29.640
Chl-a -0.610 -0.490 -0.392 -0.969 -0.859 -0.775
constant -851.563 -859.69 -852.842 -838.828 -846.142 -838.224 -513.396 -526.280 -524.691
Tab.9  Classification functions coefficients for discriminant analysis of temporal variation
monitoring periods percent correct period assigned by CA
LF NF HF
standard mode
LF 98.57143 414 6 0
NF 84.76190 33 356 31
HF 96.66666 0 14 406
total 93.33334 447 376 437
forward stepwise mode
LF 98.57143 414 6 0
NF 84.52381 34 355 31
HF 96.66666 0 14 406
total 93.25397 448 375 437
backward stepwise mode
LF 98.57143 414 6 0
NF 81.66666 41 343 36
HF 95.95238 0 17 403
total 92.06349 455 366 439
Tab.10  Classification matrix for discriminant analysis of temporal variation
Fig.5  Temporal variations: (a)Temp, (b)pH and (c) NO2-N (LF: low flow; NF: normal flow; HF: high flow)
parameters VF1 VF2 VF3 VF4 VF5
Group A (five significant VFs)
temp -0.178 0.779 0.413 -0.100 -0.137
pH -0.251 0.028 0.762 -0.066 -0.164
SS 0.060 0.176 0.076 0.837 -0.060
T-har 0.178 -0.201 -0.611 -0.296 0.117
Cl- -0.621 0.281 -0.454 0.258 -0.077
DO 0.003 -0.882 -0.091 -0.014 -0.055
CODMn -0.032 0.400 0.649 0.163 0.281
BOD5 -0.115 -0.013 -0.042 0.056 0.875
NH3-N 0.607 0.085 -0.144 -0.149 0.227
NO2-N 0.634 0.290 -0.146 0.130 0.055
NO3-N 0.815 -0.187 -0.119 0.022 -0.310
TN 0.840 -0.201 -0.121 0.053 -0.277
TP -0.079 -0.295 0.038 0.707 0.147
Chl-a 0.111 0.466 0.529 -0.049 0.310
eigenvalue 3.549 2.291 1.436 1.285 1.124
total variance/% 25.350 16.361 10.257 9.175 8.031
cumulative % variance 25.350 41.711 51.969 61.144 69.175
Group B (five significant VFs)
temp 0.856 -0.130 -0.198 0.062 -0.212
pH 0.497 -0.542 0.304 0.049 -0.038
SS 0.202 0.014 -0.206 0.701 0.033
T-har -0.604 0.456 -0.437 -0.241 0.008
Cl- -0.016 -0.097 -0.866 0.122 0.041
DO -0.700 0.016 0.438 -0.173 0.039
CODMn 0.743 -0.360 0.141 0.193 0.109
BOD5 0.009 0.072 -0.027 0.051 0.950
NH3-N 0.022 0.701 -0.147 0.125 0.333
NO2-N -0.042 0.881 0.146 -0.024 -0.043
NO3-N -0.576 0.654 0.264 -0.133 -0.150
TN -0.466 0.619 0.383 0.085 -0.002
TP 0.023 0.013 0.062 0.849 0.035
Chl-a 0.792 0.029 0.165 0.012 0.134
eigenvalue 4.970 1.837 1.583 1.091 1.007
total variance/% 35.497 13.123 11.308 7.792 7.192
cumulative % variance 35.497 48.621 59.928 67.721 74.913
Tab.11  Loadings of 14 experimental variables on significant variance factors (VFs) for Group A and B in Yuqiao Reservoir Basin
Fig.6  Plot of loadings for the VFs for Group A (a and b), Group B (c and d) in Yuqiao Reservoir Basin
Fig.7  Plot of loadings for the VFs for Group A (a and b) and Group B (c and d). Each symbol was short for each parameter in different periods (LF, NF and HF)
periods KMO Bartlett’s Sphericity tests
approx. Chi-Square significance
Group A
LF period 0.422 501.236 0.00
NF period 0.478 371.454 0.00
HF period 0.593 439.180 0.00
Group B
LF period 0.620 755.806 0.00
NF period 0.534 620.389 0.00
HF period 0.562 490.955 0.00
Tab.12  Results of KMO and Bartlett’s Sphericity tests
periods VF1 VF2 VF3 VF4 VF5
Group A
LF nutrient pollution (N) nutrient pollution (N) organic pollution inorganic pollution nutrient pollution (P)
NF nutrient pollution (N) nutrient pollution natural pollution nutrient pollution (N) + inorganic pollution natural pollution
HF nutrient pollution (N) + inorganic pollution inorganic pollution organic pollution+ nutrient pollution natural pollution natural pollution
Group B
LF nutrient pollution (N) inorganic pollution biochemical pollution inorganic pollution
NF nutrient pollution (N) organic pollution natural pollution biochemical pollution nutrient pollution (P)
HF natural pollution nutrient pollution (N) inorganic pollution+ nutrient pollution (P) nutrient pollution (N)
Tab.13  Source identification results of Group A and Group B in low-flow, normal-flow,and high-flow period
1 Turgeon S, Rodriguez M J, Thériault M, Levallois P. Perception of drinking water in the Quebec City region (Canada): the influence of water quality and consumer location in the distribution system. Journal of Environmental Management, 2004, 70(4): 363–373
https://doi.org/10.1016/j.jenvman.2003.12.014 pmid: 15016444
2 Zhou J L, Dong X G, Li G M, Wang Y P, Guo X J. Evaluation of groundwater quality in the Xinjiang plain area. Frontiers of Environmental Science and Engineering in China, 2010, 4(2): 183–186
https://doi.org/10.1007/s11783-010-0021-8
3 United Nations. Report of the World Summit on Sustainable Development. Johannesburg, South Africa, 2002.
4 Wu R, Qian S S, Hao F H, Cheng H G, Zhu D S, Zhang J Y. Modeling contaminant concentration distributions in China’s centralized source waters. Environmental Science & Technology, 2011, 45(14): 6041–6048
https://doi.org/10.1021/es1038563 pmid: 21692445
5 Liu L, Ma X M. Integrated river basin management in rapidly urbanizing areas: a case of Shenzhen, China. Frontiers of Environmental Science and Engineering in China, 2011, 5(2): 243–254
https://doi.org/10.1007/s11783-010-0276-0
6 Hu B, Hu B, Wan J Z, Nie H L, Zhai C Z. Safe river water: A ubiquitous and collaborative water quality monitoring solution. Pervasive and Mobile Computing, 2009, 5(5): 419–431
https://doi.org/10.1016/j.pmcj.2009.07.019
7 Wei S K, Lei A L, Islam S N. Modeling and simulation of industrial water demand of Beijing municipality in China. Frontiers of Environmental Science & Engineering in China, 2010, 4(1): 91–101
https://doi.org/10.1007/s11783-010-0007-6
8 Zhao J, Fu G, Lei K, Li Y W. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. Journal of Environmental Sciences (China), 2011, 23(9): 1460–1471
https://doi.org/10.1016/S1001-0742(10)60599-2 pmid: 22432281
9 Kazi T G, Arain M B, Jamali M K, Jalbani N, Afridi H I, Sarfraz R A, Baig J A, Shah Abdul Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 2009, 72(2): 301–309
10 Vega M, Pardo R, Barrado E, Deban L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 1998, 32(12): 3581–3592
https://doi.org/10.1016/S0043-1354(98)00138-9
11 Haiyan W. Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province, China. Journal of Environmental Management, 2002, 66(3): 329–340
pmid: 12448410
12 Huang F, Wang X, Lou L, Zhou Z, Wu J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 2010, 44(5): 1562–1572
https://doi.org/10.1016/j.watres.2009.11.003 pmid: 19944441
13 Singh K P, Malik A, Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 2005, 538(1–2): 355–374
https://doi.org/10.1016/j.aca.2005.02.006
14 Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling and Software, 2007, 22(4): 464–475
https://doi.org/10.1016/j.envsoft.2006.02.001
15 Simeonov V, Stratis J A, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis Th. Assessment of the surface water quality in Northern Greece. Water Research, 2003, 37(17): 4119–4124
https://doi.org/10.1016/S0043-1354(03)00398-1 pmid: 12946893
16 Pekey H, Karaka? D, Bako?lu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, 2004, 49(9–10): 809–818
https://doi.org/10.1016/j.marpolbul.2004.06.029 pmid: 15530525
17 Helena B, Pardo R, Vega M, Barrado E, Fernandez J M, Fernandez L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 2000, 34(3): 807–816
https://doi.org/10.1016/S0043-1354(99)00225-0
18 Alberto W D, Del Pilar D M, Valeria A M, Fabiana P S, Cecilia H A, De Los Angeles B M. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Cordoba-Argentina). Water Research, 2001, 35(12): 2881–2894
https://doi.org/10.1016/S0043-1354(00)00592-3 pmid: 11471688
19 Singh K P, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 2004, 38(18): 3980–3992
https://doi.org/10.1016/j.watres.2004.06.011 pmid: 15380988
20 Zhao Y, Nan J, Cui F Y, Guo L. Water quality forecase through application of BP neural network at Yuqiao reservoir. Zhejiang University Science A, 2007, 8(9): 1482–1487
https://doi.org/10.1631/jzus.2007.A1482
21 Chen L D, Fu B J, Zhang S R, Qiu J, Guo X D, Yang F L. A comparative study on nitrogen-concentration dynamics in surface water in a heterogeneous landscape. Environmental Geology, 2002, 42(4): 424–432
https://doi.org/10.1007/s00254-002-0547-6
22 Wu G H, Wei Z, Su R X. Distribution, accumulation and mobility of mercury in superficial sediment samples from Tianjin, northern China. Journal of Environmental Monitoring, 2011, 13(9): 2488–2495
https://doi.org/10.1039/c1em10365b pmid: 21805008
23 SEPAC. Environmental quality standards for surface water (GB3838–2002). State Environmental Protection Administration of China (SEPAC), 2002
24 Dumedah G, Coulibaly P. Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data. Journal of Hydrology (Amsterdam), 2011, 400(1–2): 95–102
https://doi.org/10.1016/j.jhydrol.2011.01.028
25 Zhang Y, Guo F, Meng W, Wang X Q. Water quality assessment and source identification of Daliao River Basin using multivariate statistical methods. Environmental Monitoring and Assessment, 2009, 152(1–4): 105–121
https://doi.org/10.1007/s10661-008-0300-z pmid: 18523854
26 Lattin J, Carroll D, Green P. Analyzing multivariate data. New York: Duxbury, 2003
27 Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B. Application of chemometrics in river water classification. Water Research, 2006, 40(4): 744–752
https://doi.org/10.1016/j.watres.2005.11.042 pmid: 16442142
28 Lu R S, Lo S L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Research, 2002, 36(9): 2265–2274
https://doi.org/10.1016/S0043-1354(01)00449-3 pmid: 12108719
29 Wang H, Li X, Xie Y. Hydrochemical evaluation of surface water quality and pollution source apportionment in the Luan River basin, China. Water Science and Technology, 2011, 64(10): 2119–2125
https://doi.org/10.2166/wst.2011.794 pmid: 22105137
30 Liu L, Zhou J, An X, Zhang Y, Yang L. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Systems with Applications, 2010, 37(3): 2517–2521
https://doi.org/10.1016/j.eswa.2009.08.004
31 Feng Z, Yong L, Guo H. Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environmental Monitoring and Assessment, 2007, 132(1–3): 1–13
32 Filik Iscen C, Emiroglu ?, Ilhan S, Arslan N, Yilmaz V, Ahiska S. Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environmental Monitoring and Assessment, 2008, 144(1–3): 269–276
https://doi.org/10.1007/s10661-007-9989-3 pmid: 17929181
33 Ouyang Y, Nkedi-Kizza P, Wu Q T, Shinde D, Huang C H. Assessment of seasonal variations in surface water quality. Water Research, 2006, 40(20): 3800–3810
https://doi.org/10.1016/j.watres.2006.08.030 pmid: 17069873
34 Riis T, Sand-Jensen K. Growth reconstruction and photosynthesis of aquatic mosses: Influence of light, temperature and carbon dioxide at depth. Journal of Ecology, 1997, 85(3): 359–372
https://doi.org/10.2307/2960508
35 Qu W, Kelderman P. Heavy metal contents in the Delft canal sediments and suspended solids of the River Rhine: multivariate analysis for source tracing. Chemosphere, 2001, 45(6–7): 919–925
https://doi.org/10.1016/S0045-6535(01)00101-1 pmid: 11695614
36 Liu C W, Lin K H, Kuo Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 2003, 313(1–3): 77–89
https://doi.org/10.1016/S0048-9697(02)00683-6 pmid: 12922062
37 Varol M, G?kot B, Bekleyen A, ?en B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River Basin, Turkey. Catena, 2012, 92: 11–21
https://doi.org/10.1016/j.catena.2011.11.013
38 Varol M, ?en B. Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environmental Monitoring and Assessment, 2009, 159(1–4): 543–553
https://doi.org/10.1007/s10661-008-0650-6 pmid: 19051048
39 Guildford S J, Hecky R E. Total N, Total P, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 2000, 45(6): 1213–1223
[1] Junchen Li, Sijie Lin, Liang Zhang, Yuheng Liu, Yongzhen Peng, Qing Hu. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Front. Environ. Sci. Eng., 2024, 18(3): 31-.
[2] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[3] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[4] Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen. Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments[J]. Front. Environ. Sci. Eng., 2024, 18(2): 21-.
[5] Hailong Yin, Yiyuan Lin, Huijin Zhang, Ruibin Wu, Zuxin Xu. Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm[J]. Front. Environ. Sci. Eng., 2023, 17(7): 85-.
[6] Zhaocai Wang, Qingyu Wang, Tunhua Wu. A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM[J]. Front. Environ. Sci. Eng., 2023, 17(7): 88-.
[7] Junlang Li, Zhenguo Chen, Xiaoyong Li, Xiaohui Yi, Yingzhong Zhao, Xinzhong He, Zehua Huang, Mohamed A. Hassaan, Ahmed El Nemr, Mingzhi Huang. Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator[J]. Front. Environ. Sci. Eng., 2023, 17(6): 67-.
[8] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[9] Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang. An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor[J]. Front. Environ. Sci. Eng., 2022, 16(8): 97-.
[10] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[11] Yunpeng Xing, Boyuan Xue, Yongshu Lin, Xueqi Wu, Fang Fang, Peishi Qi, Jinsong Guo, Xiaohong Zhou. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring[J]. Front. Environ. Sci. Eng., 2022, 16(12): 155-.
[12] Yindong Tong, Xuejun Wang, James J. Elser. Unintended nutrient imbalance induced by wastewater effluent inputs to receiving water and its ecological consequences[J]. Front. Environ. Sci. Eng., 2022, 16(11): 149-.
[13] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[14] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[15] Isam Alyaseri, Jianpeng Zhou, Susan M. Morgan, Andrew Bartlett. Initial impacts of rain gardens’ application on water quality and quantity in combined sewer: field-scale experiment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 19-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed