Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (5) : 792-796    https://doi.org/10.1007/s11783-014-0705-6
SHORT COMMUNICATION
Spent rechargeable lithium batteries in e-waste: composition and its implications
Xianlai ZENG,Jinhui LI()
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(200 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs.

Keywords rechargeable lithium batteries      e-waste      physical components      difference analysis      recycling     
Corresponding Author(s): Jinhui LI   
Issue Date: 20 June 2014
 Cite this article:   
Xianlai ZENG,Jinhui LI. Spent rechargeable lithium batteries in e-waste: composition and its implications[J]. Front.Environ.Sci.Eng., 2014, 8(5): 792-796.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0705-6
https://academic.hep.com.cn/fese/EN/Y2014/V8/I5/792
Fig.1  (a) Average component ratio of various RLBs (wt. %); (b) Metal contents and their total errors of various spent RLBs
Fig.2  Clustering analysis of the Co-Li concentration ratio in various spent RLBs
1 NotterD A, GauchM, WidmerR, WägerP, StampA, ZahR, AlthausH J. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environmental Science & Technology, 2010, 44(17): 6550–6556
doi: 10.1021/es903729a pmid: 20695466
2 ScrosatiB, GarcheJ. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430
doi: 10.1016/j.jpowsour.2009.11.048
3 ZengX L, LiJ H, RenY S. Prediction of various discarded lithium batteries in China. Sustainable Systems and Technology (ISSST), 2012 IEEE International Symposium on, Boston, 2012, 1–4
doi: 10.1109/ISSST.2012.6228021
4 ZengX L, LiJ H. Implications for the carrying capacity of lithium reserve in China. Resources, Conservation and Recycling, 2013, 80: 58–63
doi: 10.1016/j.resconrec.2013.08.003
5 DewulfJ, Van der VorstG, DenturckK, Van LangerhoveH, GhyootW, TytgatJ, VandeputteK. Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resources, Conservation and Recycling, 2010, 54(4): 229–234
doi: 10.1016/j.resconrec.2009.08.004
6 ZengX L, LiJ H, SinghN. Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 2014, 10(44): 1129–1165
doi: 10.1080/10643389.2013.763578
7 LisbonaD, SneeT. A review of hazards associated with primary lithium and lithium-ion batteries. Process Safety and Environmental Protection, 2011, 89(6): 434–442
doi: 10.1016/j.psep.2011.06.022
8 KangD H P, ChenM, OgunseitanO A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environmental Science & Technology, 2013, 47(10): 5495–5503
doi: 10.1021/es400614y pmid: 23638841
9 JhaM K, KumariA, JhaA K, KumarV, HaitJ, PandeyB D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Management, 2013, 33(9): 1890–1897
doi: 10.1016/j.wasman.2013.05.008 pmid: 23773705
10 LiJ H, ShiP X, WangZ F, ChenY, ChangC C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere, 2009, 77(8): 1132–1136
doi: 10.1016/j.chemosphere.2009.08.040 pmid: 19775724
11 WangR, LinY, WuS. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3–4): 194–201
doi: 10.1016/j.hydromet.2009.08.005
12 XinB, ZhangD, ZhangX, XiaY, WuF, ChenS, LiL. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technology, 2009, 100(24): 6163–6169
doi: 10.1016/j.biortech.2009.06.086 pmid: 19656671
13 ZengX L, LiJ H. Innovative application of ionic liquid to separate Al and Cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 2014, 271: 50–56
doi: 10.1016/j.jhazmat.2014.02.001 pmid: 24607415
14 ShuvaM A H, KurnyA. Hydrometallurgical recovery of value metals from spent lithium ion batteries. American Journal of Materials Engineering and Technology, 2013, 1(1): 8–12
doi: 10.12691/materials-1-1-2
15 TarasconJ M, ArmandM. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
doi: 10.1038/35104644 pmid: 11713543
16 ContestabileM, PaneroS, ScrosatiB. A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 2001, 92(1–2): 65–69
doi: 10.1016/S0378-7753(00)00523-1
17 KangK, MengY S, BrégerJ, GreyC P, CederG. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311(5763): 977–980
doi: 10.1126/science.1122152 pmid: 16484487
18 AntoliniE. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics, 2004, 170(3–4): 159–171
doi: 10.1016/j.ssi.2004.04.003
19 BalkeN, JesseS, MorozovskaA N, EliseevE, ChungD W, KimY, AdamczykL, GarcíaR E, DudneyN, KalininS V. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010, 5(10): 749–754
doi: 10.1038/nnano.2010.174 pmid: 20802493
20 ZengX L, ZhengL X, XieH H, LuB, XiaK, ChaoK, LiW, YangJ X, LinS, LiJ H. Current status and future perspective of waste printed circuit boards recycling. Procedia Environmental Sciences, 2012, 16: 590–597
doi: 10.1016/j.proenv.2012.10.081
21 LiL, GeJ, ChenR, WuF, ChenS, ZhangX. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 2010, 30(12): 2615–2621
doi: 10.1016/j.wasman.2010.08.008 pmid: 20817431
22 DuanH B, HouK, LiJ H, ZhuX. Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. Journal of Environmental Management, 2011, 92(3): 392–399
doi: 10.1016/j.jenvman.2010.10.057 pmid: 21084150
23 StevelsA, HuismanJ, WangF, LiJ H, LiB Y, DuanH B. Take back and treatment of discarded electronics: a scientific update. Frontiers of Environmental Science & Engineering, 2013, 7(4): 475–482
doi: 10.1007/s11783-013-0538-8
24 DorellaG, MansurM B. A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources, 2007, 170(1): 210–215
doi: 10.1016/j.jpowsour.2007.04.025
25 ShinS M, KimN H, SohnJ S, YangD H, KimY H. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 2005, 79(3–4): 172–181
doi: 10.1016/j.hydromet.2005.06.004
26 NanJ M, HanD M, ZuoX X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources, 2005, 152: 278–284
doi: 10.1016/j.jpowsour.2005.03.134
27 XuJ, ThomasH R, FrancisR W, LumK R, WangJ, LiangB. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 2008, 177(2): 512–527
doi: 10.1016/j.jpowsour.2007.11.074
28 LiL, ChenR, SunF, WuF, LiuJ. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy, 2011, 108(3–4): 220–225
doi: 10.1016/j.hydromet.2011.04.013
29 LuX, LeiL, YuX, HanJ. A separate method for components of spent Li-ion battery. Battery Bimonthly, 2007, 37(1): 79–80 (in Chinese)
30 SunL, QiuK. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management, 2012, 32(8): 1575–1582
doi: 10.1016/j.wasman.2012.03.027 pmid: 22534072
31 KimD, SohnJ, LeeC, LeeJ, HanK, LeeY. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. Journal of Power Sources, 2004, 132(1–2): 145–149
doi: 10.1016/j.jpowsour.2003.09.046
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[3] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[4] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[5] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[6] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[7] Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3-.
[8] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[9] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[10] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[11] Xiaolong Song, Jingwei Wang, Jianxin Yang, Bin Lu. An updated review and conceptual model for optimizing WEEE management in China from a life cycle perspective[J]. Front. Environ. Sci. Eng., 2017, 11(5): 3-.
[12] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
[13] Paul Vanegas, Jef R. Peeters, Dirk Cattrysse, Wim Dewulf, Joost R. Duflou. Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium[J]. Front. Environ. Sci. Eng., 2017, 11(5): 13-.
[14] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[15] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed