Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 615-624    https://doi.org/10.1007/s11783-014-0706-5
RESEARCH ARTICLE
Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2
Jianbing WANG1,*(),Guoqing WANG1,Chunli YANG1,Shaoxia YANG2,Qing HUANG1
1. School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, China
2. School of Energy and Power Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(231 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research investigates the performances of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment. The results show that RuO2/ZrO2-CeO2 was active for the catalytic ozonation of oxalic acid and possessed higher stability than RuO2/Al2O3 and Ru/AC. In the catalytic ozonation of dimethyl phthalate (DMP), RuO2/ZrO2-CeO2 did not enhance the DMP degradation rate but significantly improved the total organic carbon (TOC) removal rate. The TOC removal in catalytic ozonation was 56% more than that in noncatalytic ozonation. However this does not mean the catalyst was very active because the contribution of catalysis to the overall TOC removal was only 30%. The adsorption of the intermediates on RuO2/ZrO2-CeO2 played an important role on the overall TOC removal while the adsorption of DMP on it was negligible. This adsorption difference was due to their different ozonation rates. In the catalytic ozonation of disinfection byproduct precursors with RuO2/ZrO2-CeO2, the reductions of the haloacetic acid and trihalomethane formation potentials (HAAFPs and THMFPs) for the natural water samples were 38%–57% and 50%–64%, respectively. The catalyst significantly promoted the reduction of HAAFPs but insignificantly improved the reduction of THMFPs as ozone reacts fast with the THMs precursors. These results illustrate the good promise of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment.

Keywords ozonation      ruthenium      oxalic acid      dimethyl phthalate      disinfection byproduct     
Corresponding Author(s): Jianbing WANG   
Online First Date: 07 May 2014    Issue Date: 25 June 2015
 Cite this article:   
Jianbing WANG,Guoqing WANG,Chunli YANG, et al. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2[J]. Front. Environ. Sci. Eng., 2015, 9(4): 615-624.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0706-5
https://academic.hep.com.cn/fese/EN/Y2015/V9/I4/615
Fig.1  XRD patterns of RuO2/ZrO2-CeO2 (a) and ZrO2-CeO2 (b)
Fig.2  Removals of oxalic acid in semi-batch (a) and dynamic (b) catalytic ozonation experiments
Fig.3  Removal of oxalic acid in the catalytic ozonation with different Ru loading
Fig.4  Removals of DMP (a) and TOC (b) in catalytic ozonation of DMP in water
samples total removal ozonation adsorption catalysis
value/(mg·L-1) ratio/% value/(mg·L-1) contribution/% value/(mg·L-1) contribution/% value/(mg·L-1) contribution/%
ZrO2-CeO2 2.01 65 0.62 31 1.01 50 0.39 19
RuO2/ZrO2-CeO2 2.47 80 0.62 25 1.11 45 0.74 30
Tab.1  Contributions of ozonation, adsorption and catalysis to the overall TOC removal
No. sampling site TOC/(mg·L-1) UV254 conductivity/(μs·cm-1) pH
mean std. dev. mean std. dev. mean std. dev. mean std. dev.
1 Qiaoxin Town 2.32 0.198 0.043 0.0073 339 28.5 7.7 0.42
2 Beishicao Town 2.25 0.157 0.043 0.0068 338 26.5 7.6 0.40
3 Xingshou Town 2.38 0.234 0.048 0.0039 329 25.8 8.1 0.35
4 Nanshao Town 2.50 0.224 0.046 0.0051 336 25.6 8.5 0.31
5 Machi Kou 2.47 0.225 0.048 0.0053 330 25.2 8.3 0.35
6 Yangfan Town 2.52 0.209 0.047 0.0046 327 24.2 8.2 0.31
7 Hotspring Town 2.45 0.228 0.048 0.0054 311 29.5 8.2 0.34
8 Blue-dragon Bridge 2.50 0.233 0.044 0.0049 308 25.9 8.1 0.28
9 Huoqiying Bridge 2.29 0.183 0.045 0.0050 310 29.5 7.7 0.40
10 Changchun Bridge 2.33 0.205 0.043 0.0036 301 23.6 7.4 0.24
11 Yuyuan Pond 3.20 0.278 0.064 0.0082 368 35.7 7.3 0.22
Tab.2  Common water quality parameters for the natural water samples
samples MCAA/(μg·L-1) MBAA/(μg·L-1) DCAA/(μg·L-1) TCAA/(μg·L-1) BCAA/(μg·L-1) BDCAA/(μg·L-1) HAAFP/(μg·L-1) THMFP/(μg·L-1)
mean std. dev. mean std. dev. mean std. dev. mean std. dev. mean std. dev. mean std. dev.
1 6.0 0.55 26.0 3.51 0.1 0.01 51.0 4.80 1.1 0.13 6.9 0.68 91.1 149.3
2 7.5 0.61 28.5 2.15 0.1 0.01 53.0 8.25 1.3 0.12 6.6 0.69 97.0 145.5
3 7.3 0.64 27.1 2.60 0.1 0.01 51.1 4.17 0.7 0.08 6.3 0.55 92.6 160.7
4 7.0 0.69 26.5 3.65 0.1 0.01 51.8 4.22 0.6 0.08 6.2 0.51 92.2 156.4
5 7.5 0.63 26.7 1.75 0.2 0.01 52.3 4.48 0.7 0.08 6.3 0.57 93.7 163.7
6 8.3 0.67 28.0 5.00 0.1 0.02 53.7 4.30 0.8 0.10 6.4 0.59 97.3 163.0
7 7.2 0.68 27.0 2.83 0.4 0.05 58.9 7.40 1.5 0.14 6.3 0.67 101.3 160.2
8 6.8 0.58 26.5 2.34 0.3 0.03 56.3 6.12 1.6 0.23 6.3 0.63 97.8 165.8
9 6.3 0.54 25.0 3.83 0.1 0.02 55.4 5.68 1.5 0.20 6.1 0.51 94.4 152.4
10 6.8 0.68 25.3 2.74 0.3 0.02 57.1 5.80 1.7 0.14 6.1 0.55 97.3 150.1
11 27.0 3.56 30.2 2.97 0.1 0.01 76.1 6.32 2.0 0.16 7.1 0.64 142.5 220.0
Tab.3  Concentrations of haloacetic acids, HAAFPs and THMFPs of the natural water samples
Fig.5  Reductions of HAAsFP (a), TCAAFP (b) and THMFP (c) in adsorption, noncatalytic ozonation and catalytic ozonation processes
1 Huang R H, Yan H H, Li L S, Deng D Y, Shu Y H, Zhang Q Y. Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Applied Catalysis B: Environmental, 2011, 106(1): 264–271
2 Li D, Qu J. The progress of catalytic technologies in water purification: a review. Journal of Environmental Sciences-China, 2009, 21(6): 713–719
https://doi.org/10.1016/S1001-0742(08)62329-3 pmid: 19803071
3 Chang C C, Chiu C Y, Chang C Y, Chang C F, Chen Y H, Ji D R, Yu Y H, Chiang P C. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. Journal of Hazardous Materials, 2009, 161(1): 287–293
https://doi.org/10.1016/j.jhazmat.2008.03.085 pmid: 18467027
4 Zhou H, Zhang X J, Wang Z S. Occurrence of haloacetic acids in drinking water in certain cities of China. Biomedical and Environmental Sciences, 2004, 17(3): 299–308
pmid: 15602827
5 Li S, Zhang X J, Liu W J, Cao L L, Wang Z S. Formation and evolution of haloacetic acids in drinking water of Beijing City. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2001, 36(4): 475–481
https://doi.org/10.1081/ESE-100103477 pmid: 11413832
6 Chen C, Zhang X J, Zhu L X, Liu J, He W J, Han H D. Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis. Science of the Total Environment, 2008, 397(1–3): 140–147
https://doi.org/10.1016/j.scitotenv.2008.02.032 pmid: 18400262
7 Legube B, Karpel N V L. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53(1): 61–72
https://doi.org/10.1016/S0920-5861(99)00103-0
8 Chen Y H, Shang N C, Hsieh D C. Decomposition of dimethyl phthalate in an aqueous solution by ozonation with high silica zeolites and UV radiation. Journal of Hazardous Materials, 2008, 157(2–3): 260–268
https://doi.org/10.1016/j.jhazmat.2007.12.091 pmid: 18280038
9 álvarez P M, Beltrán F J, Pocostales J P, Masa F J. Preparation and structural characterization of Co/Al2O3 catalysts for the ozonation of pyruvic acid. Applied Catalysis B: Environmental, 2007, 72(3–4): 322–330
https://doi.org/10.1016/j.apcatb.2006.11.009
10 Beltran F J, Rivas F J, Ramon M E A. TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Applied Catalysis B: Environmental, 2004, 47(2): 101–109
https://doi.org/10.1016/j.apcatb.2003.07.007
11 Qu J H, Li H Y, Liu H J, He H. Ozonation of alachlor catalyzed by Cu/Al2O3 in water. Catalysis Today, 2004, 90(3–4): 291–296
https://doi.org/10.1016/j.cattod.2004.04.032
12 Faria P C C, órf?o J J M, Pereira M F. A novel ceria–activated carbon composite for the catalytic ozonation of carboxylic acids. Catalysis Communication, 2008, 9(s 11–12): 2121–2126
13 Wang J, Zhou Y, Zhu W, He X. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC. Journal of Hazardous Materials, 2009, 166(1): 502–507
https://doi.org/10.1016/j.jhazmat.2008.11.046 pmid: 19124195
14 Zhou Y, Zhu W, Liu F, Wang J, Yang S. Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere, 2007, 66(1): 145–150
https://doi.org/10.1016/j.chemosphere.2006.04.087 pmid: 16793113
15 Alvárez’ P M, Beltrán F J, Masa F J, Pocostales J P. A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment. Applied Catalysis B: Environmental, 2009, 92(3–4): 393–400
https://doi.org/10.1016/j.apcatb.2009.08.019
16 Wang J B, Zhu W P, Yang S X, Wang W, Zhou Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalyst. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37
https://doi.org/10.1016/j.apcatb.2007.08.014
17 Imamura S, Fukuda I, Ishida S. Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides. Industrial & Engineering Chemistry Research, 1988, 27(4): 718–721
https://doi.org/10.1021/ie00076a033
18 Gallezot P, Chaumet S, Perrard A, Isnard P. Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts. Journal of Catalysis, 1997, 168(1): 104–109
https://doi.org/10.1006/jcat.1997.1633
19 Beltran F J. Ozonation Reaction Kinetics for Water and Wastewater Systems. Boca Raton: CRC Press, 2004
20 Bader H, Hoingé J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–456
https://doi.org/10.1016/0043-1354(81)90054-3
21 Clescerl L S, Greenberg A E, Eaton A D. Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association, 2012
22 Buchanan W, Roddick F, Porter N. Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. Water Research, 2008, 42(13): 3335–3342
https://doi.org/10.1016/j.watres.2008.04.014 pmid: 18502470
23 Andreozzi R, Insola A, Caprio V, D’Amore M G. The kinetics of Mn(II)-catalysed ozonation of oxalic acid in aqueous solution. Water Research, 1992, 26(7): 917–921
https://doi.org/10.1016/0043-1354(92)90197-C
24 Rivera-Utrilla J, Sanchez-Polo M. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4): 319–329
https://doi.org/10.1016/S0926-3373(02)00117-0
25 Xing S, Hu C, Qu J, He H, Yang M. Characterization and reactivity of MnO(x) supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone. Environmental Science & Technology, 2008, 42(9): 3363–3368
https://doi.org/10.1021/es0718671 pmid: 18522119
26 Orge C A, Orfao J J M, Pereira M F R, Fariasb A M D, Netob R C R, Fragab M A. Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Applied Catalysis B: Environmental, 2011, 103(1–2): 190–199
https://doi.org/10.1016/j.apcatb.2011.01.026
27 Buchanan W, Roddick F, Porter N. Formation of hazardous by-products resulting from the irradiation of natural organic matter: Comparison between UV and VUV irradiation. Chemosphere, 2006, 63(7): 1130–1141
28 Edzwald J K. Water Quality & Treatment: A Handbook on Drinking Water. New York: McGraw Hill, 2011
29 Jacangelo J G, Patania N L, Reagan K M, Aieta E M, Krasner S W, McGuire M J. Ozonation: assessing its role in the formation and control of disinfection by-products. Journal–American Water Works Association, 1989, 81(8): 74–84
30 Kleiser G, Frimmel F H. Removal of precursors for disinfection by-products (Dbps)—differences between ozone- and OH-radical-induced oxidation. Science of the Total Environment, 2000, 256(1): 1–9
https://doi.org/10.1016/S0048-9697(00)00377-6 pmid: 10898383
31 Hosokawa S, Kanai H, Utani K, Taniguchi Y, Saito Y, Imamura S. State of Ru on CeO2 and its catalytic activity in the wet oxidation of acetic acid. Applied Catalysis B: Environmental, 2003, 45(3): 181–187
https://doi.org/10.1016/S0926-3373(03)00129-2
32 Vidal H, Ka?para J, Pijolat M, Colonb G, Bernal S, Cordón A, Perrichon V, Fally F. Redox behavior of CeO2–ZrO2 mixed oxides I. Influence of redox treatments on high surface area catalysts. Applied Catalysis B: Environmental, 2000, 27(1): 49–63
https://doi.org/10.1016/S0926-3373(00)00138-7
[1] Supplementary Material Download
[1] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[2] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[3] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[4] Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu. Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water[J]. Front. Environ. Sci. Eng., 2021, 15(4): 68-.
[5] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[6] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[7] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[8] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[9] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[10] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[11] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[12] Huan HE,Qian SUI,Shuguang LU,Wentao ZHAO,Zhaofu QIU,Gang YU. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
[13] Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN. Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH· generation[J]. Front. Environ. Sci. Eng., 2015, 9(4): 591-595.
[14] Xiaomao WANG,Yuqin MAO,Shun TANG,Hongwei YANG,Yuefeng F. XIE. Disinfection byproducts in drinking water and regulatory compliance: A critical review[J]. Front. Environ. Sci. Eng., 2015, 9(1): 3-15.
[15] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed