Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 625-633    https://doi.org/10.1007/s11783-014-0711-8
RESEARCH ARTICLE
Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment
Li SHENG,Shuhang HUANG,Minghao SUI(),Lingdian ZHANG,Lei SHE,Yong CHEN
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(1266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nanotubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravimetric analyzer (TGA) were used to characterize the Cu-PAA/MWCNTs. Escherichia coli (E. coil) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/MWCNTs possessed strong antimicrobial ability on E. coil. The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.

Keywords multiwalled carbon nanotubes      copper nanoparticles      antimicrobial activity      Escherichia coli (E. coil)     
Corresponding Author(s): Minghao SUI   
Online First Date: 22 May 2014    Issue Date: 25 June 2015
 Cite this article:   
Yong CHEN,Li SHENG,Shuhang HUANG, et al. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0711-8
https://academic.hep.com.cn/fese/EN/Y2015/V9/I4/625
Fig.1  X-ray energy dispersive spectroscopy (EDS) of p-MWCNTs (a), PAA/MWCNTs (b), and Cu-PAA/MWCNTs (c)
Fig.2  TEM images of p-MWCNTs (a), PAA/MWCNTs (b), Cu-PAA/MWCNTs at a lower magnification (c), and Cu-PAA/MWCNTs at a higher magnification (d)
Fig.3  X-ray photoelectron spectra (XPS) of Cu-PAA/MWCNTs: survey (a), Cu 2p3/2 (b), C 1s (c), and O 1s (d)
Fig.4  FT-IR spectra of p-MWCNTs, PAA/MWCNTs and Cu-PAA/MWCNTs
Fig.5  Raman spectra of p-MWCNTs, PAA/MWCNTs and Cu-PAA/MWCNTs
Fig.6  TG curves of p-MWCNTs, PAA/MWCNTs and Cu-PAA/MWCNTs
Fig.7  Loss of viability of E. coil cells after being treated with p-MWCNTs, PAA/MWCNTs , Cu-PAA/MWCNTs or Cu for 10, 30, 120 and 480 min with E .coil cells without MWNCTs as controls
Fig.8  Fluorescence microscopy images of E. coil cells: untreated cells (a), treated by p-MWCNTs (b), PAA/MWCNTs (c), and Cu-PAA/MWCNTs (d) for 1 h
1 McDorman K S, Pachkowski B F, Nakamura J, Wolf D C, Swenberg J A. Oxidative DNA damage from potassium bromate exposure in Long-Evans rats is not enhanced by a mixture of drinking water disinfection by-products. Chemico-Biological Interactions, 2005, 152(2–3): 107–117
2 Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D, Jr A D. Thruston. Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 2006, 40(23): 7175–7185
3 Hua G H, Reckhow D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Research, 2007, 41(8): 1667–1678
4 Gon?alves A G, Figueiredo J L, órf?o J J M, Pereira M F R. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon, 2010, 48(15): 4369–4381
5 Sui M H, Xing S C, Sheng L, Huang S H, Guo H G. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. Journal of Hazardous Materials, 2012, 227–228(5): 227–236
6 Oleszczuk P, Pan B, Xing B S. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environmental Science & Technology, 2009, 43(24): 9167–9173
7 Upadhyayula V K K, Deng S G, Mitchell M C, Smith G B. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Science of the Total Environment, 2009, 408(1): 1–13
8 Kang S, Pinault M, Pfefferle L D, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17): 8670–8673
9 Kang S, Herzberg M, Rodrigues D F, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008, 24(13): 6409–6413
10 Kang S, Mauter M S, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environmental Science & Technology, 2009, 43(7): 2648–2653
11 Liu S, Wei L, Hao L, Fang N, Chang M W, Xu R, Yang Y H, Chen Y. Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 2009, 3(12): 3891–3902
12 Alpatova A L, Shan W Q, Babica P, Upham B L, Rogensues A R, Masten S J, Drown E, Mohanty A K, Alocilja E C, Tarabara V V. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Research, 2010, 44(2): 505–520
13 Bai Y, Park I S, Lee S J, Bae T S, Watari F, Uo M, Lee M H. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon, 2011, 49(11): 3663–3671
14 Rausch J, Zhuang R C, M?der E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1038–1046
15 Bai Y, Lin D, Wu F, Wang Z, Xing B. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere, 2010, 79(4): 362–367
16 Islam M F, Rojas E, Bergey D M, Johnson A T, Yodh A G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in Water. Nano Letters, 2003, 3(2): 269–273
17 Gao C, Li W W, Jin Y Z, Kong H. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology, 2006, 17(12): 2882–2890
18 Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4(3): 707–716
19 Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Zacheo T B, D’Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 2005, 17(21): 5255–5262
20 Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177–182
21 Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956–960
22 Li Q L, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602
23 Kim J A, Seong D G, Kang T J, Youn J R. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 2006, 44(10): 1898–1905
24 Liu Q M, Zhou D B, Yamamoto Y, Ichino R, Okido M. Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 117–123
25 Thomas Y O, Lulves W J, Kraft A A. A convenient surface plate method for bacteriological examination of poultry. Journal of Food Science, 1981, 46(6): 1951–1952
26 Park B K, Jeong S, Kim D, Moon J, Lim S, Kim J S. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007, 311(2): 417–424
27 Jiang P, Li S Y, Xie S S, Gao Y, Song L. Machinable long PVP-stabilized silver nanowires. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(19): 4817–4821
28 Balachandra A M, Dai J H, Bruening M L. Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+. Macromolecules, 2002, 35(8): 3171–3178
29 Shen J F, Hu Y Z, Li C, Qin C, Shi M, Ye M X. Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir, 2009, 25(11): 6122–6128
30 Cohen J J. Apoptosis. Immunology Today, 1993, 14(3): 126–130
31 Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
32 Narayan R J, Berry C J, Brigmon R L. Structural and biological properties of carbon nanotube composite films. Materials Science and Engineering B, 2005, 123(2): 123–129
33 Kang S, Mauter M S, Elimelech M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science & Technology, 2008, 42(19): 7528–7534
34 Qi L F, Xu Z R, Jiang X, Hu C H, Zou X F. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 2004, 339(16): 2693–2700
35 Ramadan A M. Structural and biological aspects of copper (II) complexes with 2-methyl-3-amino-(3H)-quinazolin-4-one. Journal of Inorganic Biochemistry, 1997, 65(3): 183–189
36 Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175(1–3): 102–110
37 Griffitt R J, Luo J, Gao J, Bonzongo J C, Barber D S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 2008, 27(9): 1972–1978
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed