Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 634-641    https://doi.org/10.1007/s11783-014-0713-6
RESEARCH ARTICLE
Washing out heavy metals from contaminated soils from an iron and steel smelting site
Guangxu ZHU1,2,Qingjun GUO1,*(),Junxing YANG1,Hanzhi ZHANG1,2,Rongfei WEI1,2,Chunyu WANG1,2,Marc PETERS1,Xiaoyong ZHOU1,Jun YANG1
1. Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Washing is a promising method for separating contaminants bound to the particles of soil ex-situ by chemical mobilization. Laboratory batch washing experiments were conducted using deionized water and varying concentrations of oxalic acid, citric acid, tartaric acid, acetic acid, hydrochloric acid and ethylenediaminetetra acetic acid (EDTA) to assess the efficiency of using these chemicals as washing agents and to clean up heavy metals from two heavily polluted soils from an iron and streel smelting site. The toxicity reduction index and remediation costs were analyzed, and the results showed that the soils were polluted with Cd, Pb and Zn. Hydrochloric acid and EDTA were more efficient than the other washing agents in the remediation of the test soils. The maximum total toxicity reduction index showed that 0.5 mol·L-1 hydrochloric acid could achieve the remediation with the lowest costs.

Keywords heavy metals      soil washing      toxicity reduction index      iron and steel smelting site     
Corresponding Author(s): Qingjun GUO   
Online First Date: 22 May 2014    Issue Date: 25 June 2015
 Cite this article:   
Xiaoyong ZHOU,Jun YANG,Guangxu ZHU, et al. Washing out heavy metals from contaminated soils from an iron and steel smelting site[J]. Front. Environ. Sci. Eng., 2015, 9(4): 634-641.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0713-6
https://academic.hep.com.cn/fese/EN/Y2015/V9/I4/634
extractant extractant concentration/(mol·L-1)
low medium high
citric acid (C A) 0.05 0.1 0.2
oxalic acid (O A) 0.05 0.1 0.2
acetic acid (A A) 0.05 0.1 0.2
tartaric acid (T A) 0.05 0.1 0.2
HCl 0.2 0.5 1
EDTA 0.05 0.1 0.2
Tab.1  Categories and the concentrations of the various extractants
soil grain size distribution/% pH OM/% CEC/(cmol·kg-1) heavy metal content/(mg·kg-1)
sand silt clay Cd Cu Ni Pb Cr Zn
S1 66.8 24.9 8.4 8.77 14.9 11.4 2.67 69.2 21.8 335 43.0 1457
S2 83.4 16.3 0.3 8.52 17.8 12.9 2.48 24.9 15.4 693 41.2 3484
Sd 0.119 18.7 26.8 24.6 29.8 57.5
Tab.2  Physical and chemical characterization of contaminated soils
Fig.1  Removal efficiencies of Cd, Pb and Zn calculated by the extractants
treatment TRI a) reagent cost/(CNY per ton soil) CPI b)/CNY
extractant concentration/(mol·L-1) Cd Pb Zn total
water 1.25 0.06 0.03 1.34 10 7.5
oxalic acid 0.05 3.20 0.18 2.05 5.44 225 41.4
0.1 9.44 1.09 3.50 14.03 450 32.1
0.2 11.50 1.83 4.10 17.42 900 51.7
citric acid 0.05 35.28 1.51 4.32 41.11 576 14.0
0.1 41.25 2.76 4.92 48.93 1152 23.5
0.2 52.67 4.79 5.09 62.55 2304 36.8
acetic acid 0.05 7.89 0.21 0.40 8.50 90 10.6
0.1 14.70 0.59 1.00 16.30 180 11.0
0.2 19.38 1.06 1.69 22.13 360 16.3
tartaric acid 0.05 12.55 0.45 4.22 17.23 675 39.2
0.1 30.10 0.95 4.38 35.42 1350 38.1
0.2 49.65 1.56 4.70 55.90 2700 48.3
HCl 0.2 55.14 2.63 3.66 61.43 275 4.5
0.5 67.26 6.84 5.06 79.15 550 6.9
1 67.70 7.07 5.52 80.30 1100 13.7
EDTA 0.05 53.18 4.72 3.51 61.41 2800 45.6
0.1 56.60 5.04 3.60 65.24 4200 64.4
0.2 61.69 6.46 4.18 72.33 8400 116.1
Tab.3  Toxicity reduction index evaluation and cost analysis for S1
treatment TRI a) reagent cost/(CNY per ton soil) CPI b)/CNY
extractant concentration/(mol·L-1) Cd Pb Zn total
water 0.33 0.08 0.09 0.51 10 19.8
oxalic acid 0.05 1.19 0.75 1.13 3.07 225 73.2
0.1 2.80 0.99 1.57 5.36 450 83.9
0.2 4.79 1.40 2.96 9.16 900 98.3
citric acid 0.05 2.15 1.19 5.95 9.30 576 62.0
0.1 7.63 1.56 7.22 16.41 1152 70.2
0.2 11.20 3.26 7.86 22.32 2304 103.2
acetic acid 0.05 0.90 0.80 2.38 4.07 90 22.1
0.1 2.19 0.91 4.18 7.28 180 24.7
0.2 3.40 1.24 6.08 10.71 360 33.6
tartaric acid 0.05 1.59 0.92 1.23 3.74 675 180.3
0.1 5.58 1.07 2.49 9.14 1350 147.6
0.2 8.15 1.69 4.28 14.12 2700 191.2
HCl 0.2 18.18 1.83 7.37 27.38 275 10.0
0.5 37.03 7.74 8.55 53.32 550 10.3
1 47.61 10.41 8.67 66.69 1100 16.5
EDTA 0.05 37.24 8.79 8.76 54.80 2800 51.1
0.1 44.79 10.42 9.40 64.61 4200 65.0
0.2 46.92 11.61 10.86 69.40 8400 121.0
Tab.4  Toxicity reduction index evaluation and cost analysis for S2
Fig.2  Fractionation of heavy metal in soil before and after extractants treatment. EXC: Exchangeable fraction; OXI: Iron manganese oxide fraction; ORG: organic/sulfides; RES: residual fractions
1 Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333(6169): 134–139
https://doi.org/10.1038/333134a0 pmid: 3285219
2 Olu-Owolabi B I, Diagboya P N, Ebaddan W C. Mechanism of Pb2+ removal from aqueous solution using a nonliving moss biomass. Chemical Engineering Journal, 2012, 195–196: 270–275
https://doi.org/10.1016/j.cej.2012.05.004
3 Usman A R A, Kuzyakov Y, Lorenz K, Stahr K. Remediation of a soil contaminated with heavy metals by immobilizing compounds. Journal of Plant Nutrition and Soil Science, 2006, 169(2): 205–212
https://doi.org/10.1002/jpln.200421685
4 Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60(1–4): 193–207
https://doi.org/10.1016/S0013-7952(00)00101-0
5 Marquesa A P G C, Rangela A O O S, Castroa P M L. Remediation of heavy metal contaminated soils: an overview of site remediation techniques. Critical Reviews in Environmental Science and Technology, 2011, 41(10): 879–914
https://doi.org/10.1080/10643380903299517
6 Van-Benschoten J E, Matsumoto M R, Young W H. Evaluation and analysis of soil washing for seven lead-contaminated soils. Journal of Environmental Engineering, 1997, 123(3): 217–224
https://doi.org/10.1061/(ASCE)0733-9372(1997)123:3(217)
7 Peters R W. Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 1999, 66(1–2): 151–210
https://doi.org/10.1016/S0304-3894(99)00010-2 pmid: 10379036
8 Dermont G, Bergeron M, Mercier G, Richer-Laflèche M. Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 2008, 152(1): 1–31
https://doi.org/10.1016/j.jhazmat.2007.10.043 pmid: 18036735
9 Yang J S, Lee J Y, Baek K, Kwon T S, Choi J. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 2009, 171(1–3): 443–451
https://doi.org/10.1016/j.jhazmat.2009.06.021 pmid: 19577840
10 Polettini A, Pomi R, Calcagnoli G. Assisted washing for heavy metal and metalloid removal from contaminated dredged materials. Water, Air, and Soil Pollution, 2009, 196(1): 183–198
https://doi.org/10.1007/s11270-008-9767-z
11 Moutsatsou A, Gregou M, Matsas D, Protonotarios V. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere, 2006, 63(10): 1632–1640
https://doi.org/10.1016/j.chemosphere.2005.10.015 pmid: 16325230
12 Sun B, Zhao F J, Lombi E, McGrath S P. Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001, 113(2): 111–120
https://doi.org/10.1016/S0269-7491(00)00176-7 pmid: 11383328
13 Jang M, Hwang J S, Choi S I. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere, 2007, 66(1): 8–17
https://doi.org/10.1016/j.chemosphere.2006.05.056 pmid: 16831457
14 Moon D H, Lee J R, Wazne M, Park J H. Assessment of soil washing for Zn contaminated soils using various washing solutions. Journal of Industrial and Engineering Chemistry, 2012, 18(2): 822–825
https://doi.org/10.1016/j.jiec.2011.11.137
15 Ke X, Li P J, Gong Z Q, Yin W, Su D. Advances in flushing agents used for remediation of heavy metal contaminated soil. Chinese Journal of Ecology, 2004, 23(5): 145–149
16 Mann M J. Full-scale and pilot-scale soil washing. Journal of Hazardous Materials, 1999, 66(1–2): 119–136
https://doi.org/10.1016/S0304-3894(98)00207-6 pmid: 10379034
17 Geng T T, Zhang M, Cai W T. Preliminary investigation of heavy metal pollution in soils to part area a steel factory in North. Environmental Science & Technology, 2011, 34(6G): 343–346
18 Lu R K. Analytical methods for soil agricultural chemistry. Beijing: Agriculture Science and Technological Press of China, 1999
19 Ryzak M, Bieganowski A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science, 2011, 174(4): 624–633
https://doi.org/10.1002/jpln.201000255
20 Li X, Liu L, Wang Y, Luo G, Chen X, Yang X, Gao B, He X. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLoS ONE, 2012, 7(6): e39690
https://doi.org/10.1371/journal.pone.0039690 pmid: 22768107
21 Ure A M, Quevauvillier Ph, Muntau H, Griepink B. Speciation of heavy metals in soils and sediments-An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities. International Journal of Environmental Analytical Chemistry, 1993, 51(1): 135–151
https://doi.org/10.1080/03067319308027619
22 Chen T B, Zheng Y M, Chen H, Zheng G D. Background concentrations of soil heavy metals in Beijing. Environmental Sciences, 2004, 25(1): 117–122
pmid: 15330436
23 Ngwack B, Sigg L. Dissolution of Fe (III) (hydr) oxides by metal–EDTA complexes. Geochimica et Cosmochimica Acta, 1997, 61(5): 951–963
https://doi.org/10.1016/S0016-7037(96)00391-2
24 Tsang D C, Zhang W, Lo I M C. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere, 2007, 68(2): 234–243
https://doi.org/10.1016/j.chemosphere.2007.01.022 pmid: 17313968
25 Song J F, Yang J Y, Cui X Y. Effects of low molecular-weight organic acids/salts on availability of lead, zinc and arsenic in mixed metal polluted soil. Journal of Soil and Water Conservation, 2010, 24(4): 108–113
26 Qian Y, Liu Y, Peng X Y. Effects of low molecular weight organic acids on speciation of Pb in soil. Journal of Soil and Water Conservation, 2011, 25(4): 261–264
27 Zhang W H, Lo I M C. EDTA-enhanced washing for remediation of Pb-and/or Zn-contaminated soils. Journal of Environmental Engineering, 2006, 132(10): 1282–1288
https://doi.org/10.1061/(ASCE)0733-9372(2006)132:10(1282)
28 Hakanson L. An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 1980, 14(8): 975–1001
https://doi.org/10.1016/0043-1354(80)90143-8
29 Adamo P, Dudka S, Wilson M J, McHardy W J. Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environmental Pollution, 1996, 91(1): 11–19
https://doi.org/10.1016/0269-7491(95)00035-P pmid: 15091449
30 Cances B, Ponthieu M, Castrec-Rouelle M, Aubry E, Benedetti M F. Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma, 2003, 113(3-4): 341–355
https://doi.org/10.1016/S0016-7061(02)00369-5
31 Rauret G, López-Sánchez J F, Sahuquillo A, Barahona E, Lachica M, Ure A M, Davidson C M, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2000, 2(3): 228–233
https://doi.org/10.1039/b001496f pmid: 11256704
32 Ko I, Chang Y Y, Lee C H, Kim K W. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Journal of Hazardous Materials, 2005, 127(1-3): 1–13
https://doi.org/10.1016/j.jhazmat.2005.06.041 pmid: 16122872
33 Jean L, Bordas F, Bollinger J C. Chromium and nickel mobilization from a contaminated soil using chelants. Environmental Pollution, 2007, 147(3): 729–736
https://doi.org/10.1016/j.envpol.2006.09.003 pmid: 17084006
[1] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[2] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[5] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[6] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[7] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[8] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[9] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[10] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[11] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[12] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[13] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[14] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[15] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed