Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 11-18    https://doi.org/10.1007/s11783-014-0714-5
RESEARCH ARTICLE
Removing carbonyl sulfide with metal-modified activated carbon
Juan QIU,Ping NING(),Xueqian WANG(),Kai LI,Wei LIU,Wei CHEN,Langlang WANG
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
 Download: PDF(171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakthrough of 33.23 mg COS·g−1 adsorbent at 60°C, under 30% relative humidity and in presence of 1.0% oxygen was exhibited in the Cu-Co-K/AC adsorbent prepared. Competitive adsorption studies for COS in the presence of CS2, and H2S were also conducted. TPD analysis was used to identify sulfur-containing products on the carbon surface, and the results indicated that H2S, COS and SO2 were all evident in the effluent gas generated from the exhausted Cu-Co-K/AC. Structure of the activated carbon samples has been characterized using nitrogen adsorption, and their surface chemical structures were also determined with X-ray photoelectron spectroscopy (XPS). It turns out that the modification with Cu(OH)2CO3-CoPcS-KOH can significantly improve the COS removal capacity, forming SO42 species simultaneously. Regeneration of the spent activated carbon sorbents by thermal desorption has also been explored.

Keywords carbonyl sulfide      activated carbon      removal      reactive adsorption     
Corresponding Author(s): Ping NING,Xueqian WANG   
Online First Date: 30 May 2014    Issue Date: 03 December 2015
 Cite this article:   
Juan QIU,Ping NING,Xueqian WANG, et al. Removing carbonyl sulfide with metal-modified activated carbon[J]. Front. Environ. Sci. Eng., 2016, 10(1): 11-18.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0714-5
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/11
Fig.1  Effects of COS concentration on COS removal (Reaction Condition: 3.5 g sample, 1.0% O2, 60°C, 30% RH, flow rate 360 mL·min−1)
Fig.2  Effects of reaction temperature on COS removal (Reaction Condition: 3.5g sample, COS inlet concentration 754 ppm,1.0% O2, 30% RH, flow rate 360 mL·min−1)
Fig.3  Effects of relative humidity on COS removal (Reaction Condition: 3.5 g sample, COS inlet concentration 754 ppm, 1.0% O2, 60 °C, flow rate 360 mL·min−1)
samples inlet COS inlet CS2 % of pollutant molecules that are CS2 breakthrough adsorption capacity % reduction in COS adsorption capacity because of CS2
CS2 in presence of COS COS in presence of CS2 COS by itself
Cu-Co-K/AC 727.8 ppm 430.3 ppm 37.16 2.873 mg·g−1 19.09 mg·g−1 33.23 mg·g−1 42.55
0.0378 mmol·g−1 0.3182 mmol·g−1 0.5538 mmol·g−1 ratio of moles CS2 to moles COS adsorbed
0.1188
Tab.1  COS and CS2 breakthrough adsorption capacities, at 60°C under 30% RH
samples inlet COS inlet H2S % of pollutant molecules that are H2S breakthrough adsorption capacity % reduction in COSadsorption capacitybecause of H2S
H2S in presence of COS COS in presence of H2S COS by itself
Cu-Co-K/AC 742.8 ppm 1757 ppm 70.29 100.53 mg·g−1 19.46 mg·g−1 33.23 mg·g−1 41.44
2.952 mmol·g−1 0.3243 mmol·g−1 0.5538 mmol·g−1 ratio of moles H2S to moles COS adsorbed
9.103
Tab.2  COS and H2S breakthrough adsorption capacities, at 60 °C under30% RH
Fig.4  Effect of CS2 competitive adsorption on COS removal
Fig.5  Effect of H2S competitive adsorption on COS removal
Fig.6  TPD profiles from the analyses of the N2 sweep gas at the exit of the test apparatus during the thermal desorption of COS adsorbed Cu-Co-K/AC
samples SBET/(m2·g−1) Vmicro/(cm3·g−1) Vtotal/(cm3·g−1) Daverage /nm
AC 829.7 0.4400 0.4898 1.181
Cu-Co-K/AC 536.4 0.3030 0.3369 1.256
Cu-Co-K/AC-E 485.6 0.2550 0.2841 1.170
Tab.3  Porosity parameters for activated carbon samples
Fig.7  Comparison of the pore size distributions of Cu(OH)2CO3-CoPcS-KOH modified samples before and after the COS adsorption
Fig.8  Detail S 2p XPS spectral of exhausted Cu-Co-K/AC samples
Fig.9  Breakthrough curves of fresh and regenerated Cu-Co-K/AC sorbent samples. Regenerated samples are referred to as Cu-Co-K/AC-R#, where # indicates the number of times the sample has been regenerated
1 Rhodes  C, Riddel  S A, West  J, Williams  B P, Hutchings  G J. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review. Catalysis Today, 2000, 59(3–4): 443–464
https://doi.org/10.1016/S0920-5861(00)00309-6
2 Wang  H Y, Yi  H H, Ning  P, Tang  X L, Yu  L L, He  D, Zhao  S. Calcined hydrotalcite-like compounds as catalysts for hydrolysis carbonyl sulfide at low temperature. Chemical Engineering Journal, 2011, 166(1): 99–104
https://doi.org/10.1016/j.cej.2010.10.025
3 Williams  B P, Young  N C, West  J, Rhodes  C, Hutchings  G J. Carbonyl sulphide hydrolysis using alumina catalysts. Catalysis Today, 1999, 49(1–3): 99–104
https://doi.org/10.1016/S0920-5861(98)00413-1
4 Svoronos  P D N, Bruno  T J. Carbonyl sulfide: a review of its chemistry and properties. Industrial & Engineering Chemistry Research, 2002, 41(22): 5321–5336
https://doi.org/10.1021/ie020365n
5 Hinderaker  G, Sandal  O C. Absorption of carbonyl sulfide in aqueous diethanolamine. Chemical Engineering Science, 2000, 55(23): 5813–5818
https://doi.org/10.1016/S0009-2509(00)00420-6
6 Wang  L, Wang  S D, Yuan  Q, Lu  G Z. COS hydrolysis in the presence of oxygen: Experiment and modeling. Journal of Natural Gas Chemistry, 2008, 17(1): 93–97
https://doi.org/10.1016/S1003-9953(08)60032-8
7 Liu  Y C, He  H, Mu  Y J. Heterogeneous reactivity of carbonyl sulfide on α-Al2O3 and g-Al2O3. Atmospheric Environment, 2008, 42(5): 960–969
https://doi.org/10.1016/j.atmosenv.2007.10.007
8 Zhang  Y Q, Xiao  Z B, Ma  J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides. Applied Catalysis B: Environmental, 2004, 48(1): 57–63
https://doi.org/10.1016/j.apcatb.2003.09.015
9 Huang  H M, Young  N, Williams  B P, Taylor  S H, Hutchings  G. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters, 2005, 104(1–2): 17–21
https://doi.org/10.1007/s10562-005-7430-5
10 Yi  H H, Wang  H Y, Tang  X L, Ning  P, Yu  L L, He  D, Zhao  S Z. Effect of calcination temperature on catalytic hydrolysis of COS over CoNiAl catalysts derived from hydrotalcite precursor. Industrial & Engineering Chemistry Research, 2011, 50(23): 13273–13279
https://doi.org/10.1021/ie200489t
11 Toops  T J, Crocker  M. New sulfur adsorbents derived from layered double hydroxides II. DRIFTS study of COS and H2S adsorption. Applied Catalysis B: Environmental, 2008, 82(3–4): 199–207
https://doi.org/10.1016/j.apcatb.2008.01.013
12 Huang  H M, Young  N, Williams  B P, Taylor  S H, Hutchings  G. High temperature COS hydrolysis catalysed by g-Al2O3. Catalysis Letters, 2006, 110(3–4): 243–246
https://doi.org/10.1007/s10562-006-0115-x
13 Jackson  S D, Leeming  P, Webb  G. Supported metal catalysts: Preparation, characterisation, and function IV. Study of hydrogen sulphide and carbonyl sulphide adsorption on platinum catalysts. Journal of Catalysis, 1996, 160(2): 235–243
https://doi.org/10.1006/jcat.1996.0142
14 Wang  X Z, Ding  L, Zhao  Z B, Xu  W Y, Meng  B, Qiu  J H. Novel hydrodesulfurization nano-catalysts derived from Co3O4 nanocrystals with different shapes. Catalysis Today, 2011, 175(1): 509–514
https://doi.org/10.1016/j.cattod.2011.02.052
15 Thomas  B, Williams  B P, Young  N, Rhodes  C, Hutchings  G J. Ambient temperature hydrolysis of carbonyl sulfide using g-alumina catalysts: effect of calcination temperature and alkali doping. Catalysis Today, 2003, 86(4): 201–205
16 Sparks  D E, Morgan  T, Patterson  P M, Tackett  S A, Morris  E, Crocker  M. New sulfur adsorbents derived from layered double hydroxides I: Synthesis and COS adsorption. Applied Catalysis B: Environmental, 2008, 82(3–4): 190–198
https://doi.org/10.1016/j.apcatb.2008.01.012
17 Sakanishi  K, Wu  Z H, Matsumura  A, Saito  I, Hanaoka  T, Minowa  T, Tada  M, Iwasaki  T. Simultaneous removal of H2S and COS using activated carbons and their supported catalysts. Catalysis Today, 2005, 104(1): 94–100
https://doi.org/10.1016/j.cattod.2005.03.060
18 Sattler  M L, Rosenberk  R S. Removal of carbonyl sulfide using activated carbon adsorption. Journal of the Air & Waste Management Association, 2006, 56(2): 219–224
https://doi.org/10.1080/10473289.2006.10464450 pmid: 16568805
19 Wang  X, Ning  P, Shi  Y, Jiang  M. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon. Journal of Hazardous Materials, 2009, 171(1–3): 588–593
https://doi.org/10.1016/j.jhazmat.2009.06.046 pmid: 19656624
20 Huang  C C, Chen  C H, Chu  S M. Effect of moisture on H2S adsorption by copper impregnated activated carbon. Journal of Hazardous Materials, 2006, 136(3): 866–873
https://doi.org/10.1016/j.jhazmat.2006.01.025 pmid: 16497435
21 Li  J, Li  Z, Liu  B, Xia  Q B, Xi  H X. Effect of relative humidity on adsorption of formaldehyde on modified activated carbons. Chinese Journal of Chemical Engineering, 2008, 16(6): 871–875
https://doi.org/10.1016/S1004-9541(09)60008-2
22 Masuda  J J, Fukuyama  J J, Fujii  S. Influence of concurrent substances on removal of hydrogen sulfide by activated carbon. Chemosphere, 1999, 39(10): 1611–1616
https://doi.org/10.1016/S0045-6535(99)00059-4
23 Cui  H, Turn  S Q. Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Applied Catalysis B: Environmental, 2009, 88(1–2): 25–31
https://doi.org/10.1016/j.apcatb.2008.09.025
24 Yi  H H, He  D, Tang  X L, Wang  H Y, Zhao  S Z, Li  K. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide. Fuel, 2012, 97: 337–343
https://doi.org/10.1016/j.fuel.2012.02.009
25 Wang X Q, Qiu  J, Ning  P, Ren  X G, Li  Z Y, Yin  Z F, Chen  W, Liu  W. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions. Journal of Hazardous Materials, 2012, 229–230: 128–136
[1] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[4] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[5] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[6] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[7] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[8] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[9] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[10] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[11] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[12] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[13] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[14] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Yameng Li, Ziyu Liang. The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic[J]. Front. Environ. Sci. Eng., 2020, 14(6): 94-.
[15] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed