Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 970-978    https://doi.org/10.1007/s11783-014-0716-3
RESEARCH ARTICLE
Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry
Jianhong XI1,*(),Mengchang HE2,Kunpeng WANG2,Guizhi ZHANG1
1. School of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China
2. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A sensitive atomic spectrometric method for the redox speciation analysis of Sb in water is described. The proposed method is based on the selective generation of stibine from Sb(III) in a continuous flow system using non-dispersive atomic fluorescence spectrometry for detection. The effects of the HCl concentration on the fluorescence intensities of Sb(III) and Sb(V) were investigated. The results indicated that atomic fluorescence emission due to Sb(V) can constructively interfere with the determination of Sb(III). For the determination of Sb(III), four compounds were tested as masking agents to inhibit the generation of stibine from Sb(V). The effects of the concentrations of the masking agents and of HCl on the fluorescence signals from Sb(III) and Sb(V) were studied. The results indicated that citric acid and NaF can successfully suppress hydride generation from Sb(V). To evaluate the developed methodology and the influence of the matrix, the recovery of Sb(III) from natural water that was spiked with different Sb(III) and Sb(V) concentrations was tested.

Keywords Sb(III)      Sb(V)      determination      masking agents      hydride generation (HG-AFS)     
Corresponding Author(s): Jianhong XI   
Online First Date: 22 May 2014    Issue Date: 23 November 2015
 Cite this article:   
Guizhi ZHANG,Mengchang HE,Kunpeng WANG, et al. Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry[J]. Front. Environ. Sci. Eng., 2015, 9(6): 970-978.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0716-3
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/970
parameter operating conditions
high voltage of PMT 250 V
atomizer temperature 300 °C
atomizer height 8 mm
lamp current 60 mA
flow rate of carrier gas Ar 400 mL·min−1
flow rate of shield gas Ar 600 mL·min−1
measure mode std. curve
read mode peak area
KBH4 2%w/v
carrier HCl 0.5 mol·L−1
Tab.1  Instrument parameters and operating conditions
Fig.1  Effects of HCl concentration on the fluorescence signal from 10 μg·L−1 Sb(III) (solid symbols) and 10 μg·L−1 Sb(V) (open symbols) in a 0.5 mol·L−1 HCl carrier solution (circles), 1.5 mol·L−1 HCl carrier solution (squares), and 3 mol·L−1 HCl carrier solution (triangles)
Fig.2  Effects of the concentrations of masking agents on the fluorescence signal from (squares) 10 μg·L−1 Sb(III) and (solid symbols) 10 μg·L−1 Sb(V) in a 2 mol·L−1 HCl medium
Fig.3  Effects of HCl concentration on the fluorescence signals from (squares) 10 μg·L−1 Sb(III) and (triangles) 10 μg·L−1 Sb(V) containing masking agents
Fig.4  Effects of sample standing time on masking efficiency in (squares) 10 μg·L−1 Sb(III) and (triangles) 10 μg·L−1 Sb(V) containing 2 mol·L−1 HCl and different concentrations of masking agents (a, b) or containing fixed concentrations of masking agents and different concentrations of HCl (c, d)
prepared concentration/(μg·L−1) measured Sb(III)/(μg·L−1) measured total Sb/(μg·L−1)
Sb(III) Sb(V) NaF citric acid
10 10 10.01±0.1 9.15±0.3 20.11±0.6
2 10 1.73±0.2 1.99±0.1 11.86±0.7
10 2 10.4±0.5 9.41±0.4 12.21±0.8
Tab.2  Elimination of Sb(V) atomic fluorescence emission by masking agents
conditions added Sb(III)/(μg·L−1) added Sb(V)/(μg·L−1) measured Sb(III)/(μg·L−1) recovery of Sb(III)/%
sample+ 3% citric acid 0 0 N.D.a
sample+ 0.04% NaF 0 0 N.D.a
sample+ Sb(III) + Sb(V) + 3%citric acid 10 10 9.5±0.1 95±1
sample+ Sb(III) + Sb(V) + 3%citric acid 2 10 2.3±0.2 114±8
sample+ Sb(III) + Sb(V) + 3%citric acid 10 2 9.5±0.1 95±1
sample+ Sb(III) + Sb(V) + 0.04% NaF 10 10 8.5±0.1 85±1
sample+ Sb(III) + Sb(V) + 0.04% NaF 2 10 1.8±0.0 90±0.3
sample+ Sb(III) + Sb(V) + 0.04% NaF 10 2 8.7±0.0 87±0.6
Tab.3  Recovery studies in spiked water samples
1 Wedepohl  K H. The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217–1232
https://doi.org/10.1016/0016-7037(95)00038-2
2 Filella  M, Belzile  N, Chen  Y W. Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Science Reviews, 2002, 57(1-2): 125–176
https://doi.org/10.1016/S0012-8252(01)00070-8
3 Ettler  V, Mihaljevič  M, Šebek  O, Nechutný  Z. Antimony availability in highly polluted soils and sediments- a comparison of single extractions. Chemosphere, 2007, 68(3): 455–463
https://doi.org/10.1016/j.chemosphere.2006.12.085 pmid: 17306325
4 Reimann  C, Matschullat  J, Birke  M, Salminen  R. Antimony in the environment: lessons from geochemical mapping. Applied Geochemistry, 2010, 25(2): 175–198
https://doi.org/10.1016/j.apgeochem.2009.11.011
5 Wilson  S C, Lockwood  P V, Ashley  P M, Tighe  M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, 2010, 158(5): 1169–1181
https://doi.org/10.1016/j.envpol.2009.10.045 pmid: 19914753
6 Wang  X Q, He  M C, Xi  J H, Lu  X F. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). Journal of Soils and Sediments, 2010, 10(5): 827–837
https://doi.org/10.1007/s11368-010-0196-4
7 Wang  X Q, He  M C, Xi  J H, Lu  X F. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal, 2011, 97(1): 4–11
https://doi.org/10.1016/j.microc.2010.05.011
8 He  M, Wang  X, Wu  F, Fu  Z. Antimony pollution in China. Science of the Total Environment, 2012, 421-422: 41–50
https://doi.org/10.1016/j.scitotenv.2011.06.009 pmid: 21741676
9 Groth  D H, Stettler  L E, Burg  J R, Busey  W M, Grant  G C, Wong  L. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. Journal of Toxicology and Environmental Health, 1986, 18(4): 607–626
https://doi.org/10.1080/15287398609530898 pmid: 3735460
10 Kuroda  K, Endo  G, Okamoto  A, Yoo  Y S, Horiguchi  S. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutation Research, 1991, 264(4): 163–170
https://doi.org/10.1016/0165-7992(91)90072-C pmid: 1723493
11 Guy  A, Jones  P, Hill  S J. Identification and chromatographic separation of antimony species with α-hydroxy acid. Analyst (London), 1998, 123(7): 1513–1518
https://doi.org/10.1039/a708574e
12 Zhang  X, Cornelis  R, Mees  L. Speciation of antimony(III) and antimony(V) species by using high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1998, 13(3): 205–207
https://doi.org/10.1039/a706621j
13 Zheng  J, Ohata  M, Furuta  N. Antimony speciation in environmental samples by using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Analytical Sciences, 2000, 16(1): 75–80
https://doi.org/10.2116/analsci.16.75
14 Semenova  N V, Leal  L O, Forteza  R, Cerd`a  V. Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Analytica Chimica Acta, 2005, 530(1): 113–120
https://doi.org/10.1016/j.aca.2004.08.046
15 Li  Z X, Guo  Y A. Simultaneous determination of trace arsenic, antimony, bismuth and selenium in biological samples by hydride generation-four-channel atomic fluorescence spectrometry. Talanta, 2005, 65(5): 1318–1325
https://doi.org/10.1016/j.talanta.2004.09.021 pmid: 18969948
16 Miravet  R, López-Sánchez  J F, Rubio  R. Comparison of pre-reducing agents for antimony determination by hydride generation atomic fluorescence spectrometry. Analytica Chimica Acta, 2004, 511(2): 295–302
https://doi.org/10.1016/j.aca.2004.02.014
17 Ferreira  H S, Ferreira  S L C, Cervera  M L, Guardia  M. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B, 2009, 64(6): 597–600
https://doi.org/10.1016/j.sab.2009.03.018
18 Henden  E, İşlek  Y, Kavas  M, Aksuner  N, Yayayürük  O, Çiftçi  T D, İlktaç  R. A study of mechanism of nickel interferences in hydride generation atomic adsorption spectrometric determination of arsenic and antimony. Spectrochimica Acta Part B, 2011, 66(11-12): 793–798
https://doi.org/10.1016/j.sab.2011.10.001
19 Wu  H, Wang  X, Liu  B, Liu  Y, Li  S, Lu  J, Tian  J, Zhao  W, Yang  Z. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column. Spectrochimica Acta Part B, 2011, 66(1): 74–80
https://doi.org/10.1016/j.sab.2010.12.002
20 Andreae  M O, Asmode  J F, Foster  P, Van’t dack  L. Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Analytical Chemistry, 1981, 53(12): 1766–1771
https://doi.org/10.1021/ac00235a012
21 Nakashima  S. Selective determination of antimony(III) and antimony(V) by atomic-absorption spectrophotometry following stibine generation. Analyst (London), 1980, 105(1252): 732–733
https://doi.org/10.1039/an9800500732
22 Apte  S C, Howard  A G. Determination of dissolved inorganic antimony(V) and antimony(III) species in natural waters by hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1986, 1(3): 221–225
https://doi.org/10.1039/ja9860100221
23 D’ulivo  A, Lampugnani  L, Pellegrini  G, Zamboni  R. Determination of antimony by continuous hydride generation coupled with non-dispersive atomic fluorescence detection. Journal of Analytical Atomic Spectrometry, 1995, 10(11): 969–974
https://doi.org/10.1039/ja9951000969
24 Deng  T L, Chen  Y W, Belzile  N. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Analytica Chimica Acta, 2001, 432(2): 293–302
https://doi.org/10.1016/S0003-2670(00)01387-8
25 Mohammad  B, Ure  A, Reglinski  J, Littlejohn  D. Speciation of antimony in natural waters: the determination of Sb(III) and Sb(V) by continuous flow hydride generation-atomic absorption spectrometry. Chemical Speciation and Bioavailability, 1990, 3: 117–122
26 Sun  H, Qiao  F, Suo  R, Li  L, Liang  S. Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry. Analytica Chimica Acta, 2004, 505(2): 255–261
https://doi.org/10.1016/j.aca.2003.10.071
27 Chen  B, Krachler  M, Shotyk  W. Determination of antimony in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1256–1262
https://doi.org/10.1039/b306597a
28 Guo  X W, Li  L. Interferences in hydride generation-atomic absorption spectrometry/atomic fluorescence spectrometry and their elimination. Analytical Chemistry, 1986, 14: 151–158 (in Chinese)
29 Yamamoto  M, Yasuda  M, Yamamoto  Y. Hydride-generation atomic absorption spectrometry coupled with flow injection analysis. Analytical Chemistry, 1985, 57(7): 1382–1385
https://doi.org/10.1021/ac00284a045
30 Fuentes  E, Pinochet  H, Gregori  I D, Potin-Gautier  M. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B, 2003, 58(7): 1279–1289
https://doi.org/10.1016/S0584-8547(03)00036-3
[1] Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG. Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor[J]. Front Envir Sci Eng, 2012, 6(6): 831-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed