Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 192-200    https://doi.org/10.1007/s11783-014-0719-0
RESEARCH ARTICLE
Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb
Yan SHAO1,Haobo HOU1,Guangxing WANG2,Sha WAN1,Min ZHOU1,*()
1. School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
2. GNSS Research Center, Wuhan University, Wuhan 430072, China
 Download: PDF(4486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.

Keywords municipal solid waste incineration (MSWI) fly ash      blast furnace slag      leaching behavior      Cr      Pb     
Corresponding Author(s): Min ZHOU   
Online First Date: 12 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Yan SHAO,Haobo HOU,Guangxing WANG, et al. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb[J]. Front. Environ. Sci. Eng., 2016, 10(1): 192-200.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0719-0
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/192
sample MSWI fly ash BFS clinker silica fume anhydrite FA
H1 80 17 3
H2 80 15.8 3 1.2
H3 80 15.8 3 1.2
H4 80 15.8 3 1.2
H5 80 15.8 3 1.2 1.2
H6 80 15.8 3 1.2 1.2
H7 80 15.8 3 1.2 1.2
Tab.1  Mixture proportions of different solidification matrices.
Fig.1  TCLP results of Pb and Cr from solidified samples
Fig.2  X-ray diffraction patterns of samples H10, H20, H30, H40, H50, H60 and H70
Fig.3  X-ray diffraction patterns of samples H1, H2, H3, H4, H5, H6 and H7
Fig.4  EDS spectrum focusing on C-S-H microstructure (+) in sample H1
Fig.5  EDS spectrums focusing on C-S-H and ettringite microstructure (+) in sample H6
Fig.6  SEM images of samples H1, H2, H3 and H4
Fig.7  The pH curve of leachate (square) and fractions of Cr (dot) and Pb (triangle) dissolution in continuous acid extraction test
Fig.8  X-ray diffraction patterns of residues in each stage of continuous acid extraction test
1 Sabbas  T, Polettini  A, Pomi  R, Astrup  T, Hjelmar  O, Mostbauer  P, Cappai  G, Magel  G, Salhofer  S, Speiser  C, Heuss-Assbichler  S, Klein  R, Lechner  P, 0. Management of municipal solid waste incineration residues. Waste Management (New York, N.Y.), 2003, 23(1): 61–88
https://doi.org/10.1016/S0956-053X(02)00161-7 pmid: 12623102
2 Colangelo  F, Cioffi  R, Montagnaro  F, Santoro  L. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Management (New York, N.Y.), 2012, 32(6): 1179–1185
https://doi.org/10.1016/j.wasman.2011.12.013 pmid: 22244615
3 Diaz-Loya  E I, Allouche  E N, Eklund  S, Joshi  A R, Kupwade-Patil  K. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash. Waste Management (New York, N.Y.), 2012, 32(8): 1521–1527
https://doi.org/10.1016/j.wasman.2012.03.030 pmid: 22542857
4 Karagiannidis  A, Kontogianni  S, Logothetis  D. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece. Waste Management (New York, N.Y.), 2013, 33(2): 363–372
https://doi.org/10.1016/j.wasman.2012.10.023 pmid: 23206519
5 Liu  W, Hou  H, Zhang  C, Zhang  D. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash. Waste Management & Research, 2009, 27(3): 258–266
https://doi.org/10.1177/0734242X08095017 pmid: 19423575
6 Qian  G, Yang  X, Dong  S, Zhou  J, Sun  Y, Xu  Y, Liu  Q. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices. Journal of Hazardous Materials, 2009, 165(1–3): 955–960
https://doi.org/10.1016/j.jhazmat.2008.10.078 pmid: 19062163
7 Baricova  D, Pribulova  A, Demeter  P. Utilizing of metallurgical slag for production of cementless concrete mixtures. Metalurgija, 2012, 4(51): 465–468
8 Klemm  W A, Bhatty  J I. Fixation of Heavy Metals as Oxyanion-substituted Ettringites. Portland Cement Association, 2002
9 ASTM D6357–00a. Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectrometry1. American Society for the Testing of Materials, Philadelphia, PA, 2000
10 US EPA. Test methods for evaluating solid wastes, toxicity characteristic leaching procedure (TCLP), Method 1311 SW-846, third edition, Environmental Protection Agency, Washington, DC, USA, 1996.
11 Lampris  C, Stegemann  J A, Pellizon-Birelli  M, Fowler  G D, Cheeseman  C R. Metal leaching from monolithic stabilised/solidified air pollution control residues. Journal of Hazardous Materials, 2011, 185(2–3): 1115–1123
https://doi.org/10.1016/j.jhazmat.2010.10.021 pmid: 21074942
12 Junkang  L, Meng  W, Kai  D. Entrapment of CrO42−  by C-S-H during C-S-H Formation. Journal of Wuhan University of Technology, 2009, 31(20): 55–57 (in Chinese)
13 Yan  S, Min  Z, Weixing  W. Identification of chromate binding mechanisms in Friedel’s salt. Construction & Building Materials, 2013, 48: 942–947
https://doi.org/10.1016/j.conbuildmat.2013.07.098
14 Gougar  M L D, Scheetz  B E, Roy  D M. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste management, 1996, 16(4): 295–303
15 Leisinger  S M, Lothenbach  B, Le Saout  G, Kägi  R, Wehrli  B, Johnson  C A. Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4)×(SO4)(1-x)]3×26 H2O. Environmental Science & Technology, 2010, 44(23): 8983–8988
https://doi.org/10.1021/es100554v pmid: 21053912
16 Zhang  D, Liu  W, Hou  H, He  X. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash. Waste Management & Research, 2007, 25(5): 402–407
https://doi.org/10.1177/0734242X07075255 pmid: 17985665
17 Yan  S, Min  Z, Weixing  W. Immobilization Mechanisms of Cr and Pb in cement solidified municipal solid waste incineration fly ash. Fresenius Environ Bull, 2013, 8(22): 2291–2296
18 Ojas  A C, Joseph  J B. Leaching behavior of hazardous heavy metals from lime fly ash cements. Journal of Environmental Engineering, 2013, 139(5): 633–641
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000628
19 Aditya  K, Gauray  S, Cedric  P. The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations. Cement and Concrete Research, 2012, 42(11): 1513–1523
https://doi.org/10.1016/j.cemconres.2012.07.003
20 Sanchez  H M J, Fernandez  J A F, Palomo  A. C4A3S hydration in different alkaline media. Cement and Concrete Research, 2013, 46: 41–49
https://doi.org/10.1016/j.cemconres.2013.01.008
21 Nicoleau  L, Nonat  A, Perrey  D. The di- and tricalcium silicate dissolutions. Cement and Concrete Research, 2013, 47: 14–30
https://doi.org/10.1016/j.cemconres.2013.01.017
22 Junkang  L, Yanxin  W. Mechanisms of Pb2+ Solidified by Composite Cement. Bulletin of the Chinese Ceramic Society, 2005, 4: 10–14 (in Chinese)
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Fei Xie, Bowei Zhao, Ying Cui, Xiao Ma, Xiao Zhang, Xiuping Yue. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Front. Environ. Sci. Eng., 2021, 15(6): 121-.
[3] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[4] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[5] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[6] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[7] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[8] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[9] Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He. Understanding building-occupant-microbiome interactions toward healthy built environments: A review[J]. Front. Environ. Sci. Eng., 2021, 15(4): 65-.
[10] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[11] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[12] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[13] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[14] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[15] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed