Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (3) : 453-464    https://doi.org/10.1007/s11783-014-0721-6
RESEARCH ARTICLE
Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing
Mary Beth LEIGH1,2,*(),Wei-Min WU3,*(),Erick CARDENAS1,Ondrej UHLIK4,Sue CARROLL5,Terry GENTRY5,7,Terence L. MARSH1,Jizhong ZHOU5,6,Philip JARDINE5,Craig S. CRIDDLE3,James M. TIEDJE1
1. Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
2. Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
3. Department of Civil and Environmental Engineering, Center for Sustainable Development & Global Competitiveness, Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305-4020, USA
4. Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
5. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
6. Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
7. Department of Crop and Soil Sciences, Texas A&M University, College Station, TX 77843, USA
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with 13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosm with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. 13C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-reducing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobacter and Desulfosporosinus. The findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.

Keywords Stable isotope probing (SIP)      ethanol      acetate      uranium reduction      sediment      bioremediation     
Corresponding Author(s): Mary Beth LEIGH,Wei-Min WU   
Online First Date: 19 June 2014    Issue Date: 30 April 2015
 Cite this article:   
Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS, et al. Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing[J]. Front. Environ. Sci. Eng., 2015, 9(3): 453-464.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0721-6
https://academic.hep.com.cn/fese/EN/Y2015/V9/I3/453
microcosm FW104 FW026
groundwater
??pH 5.88 5.86
?? H C O 3 - , mmol·L-1 1.3 1.1
?? S O 4 2 - , mmol·L-1 1.38 1.95
?? S 2 - , mmol·L-1 0.18 0.023
??NO3-, mmol·L-1 0 0.001
??Cl-, mmol·L-1 2.57 2.57
??U, μg·L-1 129 132
??Fe, mmol·L-1 0.028 0.025
??Na+, mmol·L-1 1.71 1.90
??K+, mmol·L-1 0.59 0.63
??Ca2+, mmol·L-1 0.62 0.64
??Mg2+, mmol·L-1 0.33 0.36
??Mn2+, mmol·L-1 0.063 0.064
??Be, mmol·L-1 0.014 0.014
??COD, mg·L-1 146 9
sediment
??U content, m·kg-1 6.0 1.20
??U(VI) in total U, % 60 <10
??Fe content, g·kg-1 199 47
??Fe(II) in total Fe, % 53% 10%
??Sulfide content, mg·kg-1 23 0
Tab.1  Chemical composition of groundwater and sediment samples used for microcosm test
well sample type MPN
denitrifiers SRB FeRB
groundwater (cells·mL-1)
FW104 (injection) groundwater 9.4 × 105 5.4 × 106 1.4× 104
FW026 (extraction) groundwater 2.8 × 105 5.5 × 105 5.1× 105
sediment (cells·g-1 dry weight)
FW104 (injection) sediment 7.2 × 108 1.53 × 108 9.4 × 107
FW026 (extraction) sediment 1.1 × 107 1.1 × 106 1.9 × 106
Tab.2  Most probable numbers (MPN) of denitrifiers, sulfate reducing bacteria (SRB) and iron (III) reducing bacteria (FeRB) in groundwater and sediment samples used for microcosm test.
organism relative abundance /%a electron acceptor electron donor T-RF length (bp) T-RF label on Fig.3
FW104 FW026 Fe(III) Nitrate Sulfate U(VI) Ethanol Acetate
Acidobacteria
??Geothrix 11.0 15.5 + + - ? - + 96, 375 B, E
Chloroflexi
??Anaerolinea 1.9 7.7 - - - ? - - 213 C
Firmicutes
??Desulfosporosinus 1.3 0.0 + -* + + + + 386 nd
Gemmatimoadetes
??Gemmatimonas 1.3 0.0 - - - - - + 360 D
Proteobacteria
??Acidovorax 1.9 0.7 - + - ?* + + 204 C
??Anaeromyxobacter 0.6 0.0 + + - + ? + 94, 224 B
??Desulfovibrio 6.5 5.6 + + + + + - 95 B
??Duganella 9.0 0.7 ? - ? ? + + 67 A
??Ferribacterium 11 14.1 + + - ? + 67, 207 A, C
??Geobacter 2.6 0.7 + + - + + + 95 B
??Thiobacillus 4.5 4.9 -* + - ? -* - 67, 451,570 A, F, G
??Rhodoferax 0.0 3.5 + + - - - + 206 C
??Rhodanobacter 6.5 0.0 ? - - ? - ? 209 C
??Sterolibacterium 0.0 1.4 ? + ? ? - - 67 A
??Sphingomonas 5.2 0.7 ? + ? ? ? -* 96 B
Tab.3  Dominant microorganisms detected in the sediment samples and predicated terminal restriction fragments (T-RF) length.
Fig.1  T-RFLP profiles of total community DNA, heavy background control DNA (representing contamination) and heavy DNA following 7 d incubation with 13C-ethanol for each microcosm.

Refer to Table 3 for T-RF sizes. T-RFs matched to clone sequences based on in silico digestions are labeled as follows A. Duganella*, Ferribacterium, Sterolibacterium, Thiobacillus; B. Desulfovibrio**, Sphingomonas**, Geobacter, Geothrix, Anaeromyxobacter; C. Ferribacterium**, Rhodanobacter**, Rhodoferax*, Anaerolinea**, Acidovorax* ; D. Gemmatimonas, E. Geothrix**, F. Thiobacillus*, G. Thiobacillus.

*=Sequence associate with T-RF abundant in clone libraries. ** =Abundant in clone libraries (>5% of clones, Table 3).

Fig.2  Concentrations of (a) ethanol; (b) acetate ; (c) nitrate; (d) sulfate; (e) sulfide; and (f) U(VI) in microcosms during the SIP incubation period.
Fig.3  Quantitation of 16S rRNA genes in density gradient fractions at initiation of experiment (0 h) and following 168 h incubation with 13C-ethanol. Y axis shows abundance of 16S rRNA gene copies as a ratio of the maximum copies detected in each gradient.
1 Lovley D R, Phillips E J. Reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 1992, 58(3): 850–856
pmid: 1575486
2 Anderson R T, Vrionis H A, Ortiz-Bernad I, Resch C T, Long P E, Dayvault R, Karp K, Marutzky S, Metzler D R, Peacock A, White D C, Lowe M, Lovley D R. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 2003, 69(10): 5884–5891
https://doi.org/10.1128/AEM.69.10.5884-5891.2003 pmid: 14532040
3 Istok J D, Senko J M, Krumholz L R, Watson D, Bogle M A, Peacock A, Chang Y J, White D C. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environmental Science & Technology, 2004, 38(2): 468–475
https://doi.org/10.1021/es034639p pmid: 14750721
4 Coates J D, Ellis D J, Gaw C V, Lovley D R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 1999, 49(Pt 4): 1615–1622
https://doi.org/10.1099/00207713-49-4-1615 pmid: 10555343
5 Wu W M, Carley J, Gentry T, Ginder-Vogel M A, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace M N, Nyman J, Luo J, Gentile M E, Fields M W, Hickey R F, Gu B, Watson D, Cirpka O A, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Environmental Science & Technology, 2006, 40(12): 3986–3995
https://doi.org/10.1021/es051960u pmid: 16830572
6 Wu W M, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile M E, Rajan R, Wagner D, Hickey R F, Gu B, Watson D, Cirpka O A, Kitanidis P K, Jardine P M, Criddle C S. Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environmental Science & Technology, 2006, 40(12): 3978–3985
https://doi.org/10.1021/es051954y pmid: 16830571
7 Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, Van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields M W, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology, 2007, 41(16): 5716–5723
https://doi.org/10.1021/es062657b pmid: 17874778
8 Wu W M, Carley J, Green S J, Luo J, Kelly S D, Van Nostrand J, Lowe K, Mehlhorn T, Carroll S, Boonchayanant B, L?fller F E, Watson D, Kemner K M, Zhou J, Kitanidis P K, Kostka J E, Jardine P M, Criddle C S. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. Environmental Science & Technology, 2010, 44(13): 5104–5111
https://doi.org/10.1021/es1000837 pmid: 20527772
9 Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM. Microbial communities in contaminated sediments associated with bioremediation of uranium to submicromolar levels. Applied Environmental Microbiology, 2008, 74(12): 3718–3729
10 Hwang C, Wu W, Gentry T J, Carley J, Corbin G A, Carroll S L, Watson D B, Jardine P M, Zhou J, Criddle C S, Fields M W. Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths. ISME Journal, 2009, 3(1): 47–64
https://doi.org/10.1038/ismej.2008.77 pmid: 18769457
11 Friedrich M W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology, 2006, 17(1): 59–66
https://doi.org/10.1016/j.copbio.2005.12.003 pmid: 16376070
12 Whiteley A S, Manefield M, Lueders T. Unlocking the ‘microbial black box’ using RNA-based stable isotope probing technologies. Current Opinion in Biotechnology, 2006, 17(1): 67–71
https://doi.org/10.1016/j.copbio.2005.11.002 pmid: 16337784
13 Evershed R P, Crossman Z M, Bull I D, Mottram H, Dungait J A, Maxfield P J, Brennand E L. 13C-Labelling of lipids to investigate microbial communities in the environment. Current Opinion in Biotechnology,2006, 17(1):72–82
14 Uhlik O, Leewis M C, Strejcek M, Musilova L, Mackova M, Leigh M B, Macek T. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnology Advances, 2013, 31(2): 154–165
https://doi.org/10.1016/j.biotechadv.2012.09.003 pmid: 23022353
15 Luo J, Wu W, Fienen M N, Jardine P M, Mehlhorn T L, Watson D B, Cirpka O A, Criddle C S, Kitanidis P K. A nested-cell approach for in situ remediation. Ground Water, 2006, 44(2): 266–274
https://doi.org/10.1111/j.1745-6584.2005.00106.x pmid: 16556208
16 Hwang C, Wu W M, Gentry T J, Carley J, Carroll S L, Schadt C, Watson D, Jardine P M, Zhou J, Hickey R F, Criddle C S, Fields M W. Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. Applied Microbiology and Biotechnology, 2006, 71(5): 748–760
https://doi.org/10.1007/s00253-005-0189-1 pmid: 16292532
17 Wu W M, Watson D B, Luo J, Carley J, Mehlhorn T, Kitanidis P K, Jardine P M, Criddle C S. Surge block method for controlling well clogging and sampling sediment during bioremediation. Water Research, 2013, 47(17): 6566–6573
https://doi.org/10.1016/j.watres.2013.08.033 pmid: 24070865
18 Leigh M B, Pellizari V H, Uhlík O, Sutka R, Rodrigues J, Ostrom N E, Zhou J, Tiedje J M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME Journal, 2007, 1(2): 134–148
https://doi.org/10.1038/ismej.2007.26 pmid: 18043623
19 Ashelford K E, Chuzhanova N A, Fry J C, Jones A J, Weightman A J. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Applied and Environmental Microbiology, 2006, 72(9): 5734–5741
https://doi.org/10.1128/AEM.00556-06 pmid: 16957188
20 Ashelford K E, Chuzhanova N A, Fry J C, Jones A J, Weightman A J. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Applied and Environmental Microbiology, 2005, 71(12): 7724–7736
https://doi.org/10.1128/AEM.71.12.7724-7736.2005 pmid: 16332745
21 Cole J R, Chai B, Farris R J, Wang Q, Kulam S A, McGarrell D M, Garrity G M, Tiedje J M. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, 2005, 33(Database issue): D294–D296
https://doi.org/10.1093/nar/gki038 pmid: 15608200
22 Lovley D R, Phillips E J, Gorby Y A, Landa E R. Microbial reduction of uranium. Nature, 1991, 350(6317): 413–416
https://doi.org/10.1038/350413a0
23 Wu Q, Sanford R A, L?ffler F E. Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Applied and Environmental Microbiology, 2006, 72(5): 3608–3614
https://doi.org/10.1128/AEM.72.5.3608-3614.2006 pmid: 16672509
24 Zhou P, Gu B. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environmental Science & Technology, 2005, 39(12): 4435–4440
https://doi.org/10.1021/es0483443 pmid: 16047778
26 Lovley D R, Phillips E J P, Gorby Y A, Landa E R. Microbial reduction of uranium. Nature, 1991, 350(6317): 413–416
https://doi.org/10.1038/350413a0
27 Suzuki Y, Kelly SD, Kemner KM, Banfield JF: Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochimica acta, 2004, 92(1): 11–16
29 Nyman J L, Marsh T L, Ginder-Vogel M A, Gentile M, Fendorf S, Criddle C. Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation, 2006, 17(4): 303–316
https://doi.org/10.1007/s10532-005-9000-3 pmid: 16491308
30 Cummings D E, Caccavo F Jr, Spring S, Rosenzweig R F. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Archives of Microbiology, 1999, 171(3): 183–188
https://doi.org/10.1007/s002030050697
31 Beller H R, Chain P S G, Letain T E, Chakicherla A, Larimer F W, Richardson P M, Coleman M A, Wood A P, Kelly D P. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. Journal of Bacteriology, 2006, 188(4): 1473–1488
https://doi.org/10.1128/JB.188.4.1473-1488.2006 pmid: 16452431
32 Wolfe A J. The acetate switch. Microbiology and Molecular Biology Reviews, 2005, 69(1): 12–50
https://doi.org/10.1128/MMBR.69.1.12-50.2005 pmid: 15755952
33 Senko J M, Istok J D, Suflita J M, Krumholz L R. In-situ evidence for uranium immobilization and remobilization. Environmental Science & Technology, 2002, 36(7): 1491–1496
https://doi.org/10.1021/es011240x pmid: 11999056
34 Wu W M, Gu B, Fields M W, Gentile M, Ku Y K, Tiquias S, Nyman J, Zhou J, Jardine P M, Criddle C S. Reduction uranium (VI) by denitrifying biomass. Bioremediation Journal, 2005, 9(1): 49–61
https://doi.org/10.1080/10889860590929628
35 Wu W M, Hickey R F, Zeikus J G. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Applied and Environmental Microbiology, 1991, 57(12): 3438–3449
pmid: 1785921
36 Mohanty S R, Kollah B, Hedrick D B, Peacock A D, Kukkadapu R K, Roden E E. Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments. Environmental Science & Technology, 2008, 42(12): 4384–4390
https://doi.org/10.1021/es703082v pmid: 18605559
37 Drake H L, Küsel K, Matthies C. Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie van Leeuwenhoek, 2002, 81(1-4): 203–213
https://doi.org/10.1023/A:1020514617738 pmid: 12448719
38 Heo J, Wolfe M T, Staples C R, Ludden P W. Converting the NiFeS carbon monoxide dehydrogenase to a hydrogenase and a hydroxylamine reductase. Journal of Bacteriology, 2002, 184(21): 5894–5897
https://doi.org/10.1128/JB.184.21.5894-5897.2002 pmid: 12374822
39 Magli A, Rainey F A, Leisinger T. Acetogenesis from dichloromethane by a two-component mixed culture comprising a novel bacterium. Applied and Environmental Microbiology, 1995, 61(8): 2943–2949
pmid: 16535097
40 O’Loughlin E J, Kelly S D, Cook R E, Csencsits R, Kemner K M. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environmental Science & Technology, 2003, 37(4): 721–727
https://doi.org/10.1021/es0208409 pmid: 12636270
41 Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C. Humic substances as electron acceptors for microbial respiration. Nature, 1996, 382(6590): 445–448
https://doi.org/10.1038/382445a0
42 Finneran K T, Johnsen C V, Lovley D R. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 3): 669–673
https://doi.org/10.1099/ijs.0.02298-0 pmid: 12807184
43 Lovley D R, Roden E E, Phillips E J P, Woodward J C. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology, 1993, 113(1–2): 41–53
https://doi.org/10.1016/0025-3227(93)90148-O
44 Lovley D R, Phillips E J P, Gorby Y A, Landa E R. Microbial reduction of uranium. Nature, 1991, 350(6317): 413–416
https://doi.org/10.1038/350413a0
45 Basso O, Caumette P, Magot M. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 1): 101–104
https://doi.org/10.1099/ijs.0.63303-0 pmid: 15653861
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[5] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[6] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[7] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[8] Kun Li, Min Yang, Jianfeng Peng, Ruiping Liu, Tista Prasai Joshi, Yaohui Bai, Huijuan Liu. Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects[J]. Front. Environ. Sci. Eng., 2019, 13(6): 87-.
[9] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[10] Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang. Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes[J]. Front. Environ. Sci. Eng., 2019, 13(1): 13-.
[11] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[12] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[13] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[14] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[15] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed