Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 28-36    https://doi.org/10.1007/s11783-014-0722-5
RESEARCH ARTICLE
Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite
Lijing DONG1,2,Zhiliang ZHU1,*(),Yanling QIU1,Jianfu ZHAO3
1. Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai 200092, China
2. Environmental Monitoring Centre of Changzhou, Changzhou 213000, China
3. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
 Download: PDF(439 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel composite adsorbent, hydroxyapatite/manganese dioxide (HAp/MnO2), has been developed for the purpose of removing lead ions from aqueous solutions. The combination of HAp with MnO2 is meant to increase its adsorption capacity. Various factors that may affect the adsorption efficiency, including solution pH, coexistent substances such as humic acid and competing cations (Ca2+, Mg2+), initial solute concentration, and the duration of the reaction, have been investigated. Using this composite adsorbent, solution pH and coexistent calcium or magnesium cations were found to have no significant influence on the removal of lead ions under the experimental conditions. The adsorption equilibrium was described well by the Langmuir isotherm model, and the calculated maximum adsorption capacity was 769 mg·g−1. The sorption processes obeyed the pseudo-second-order kinetics model. The experimental results indicate that HAp/MnO2 composite may be an effective adsorbent for the removal of lead ions from aqueous solutions.

Keywords lead      composite materials      manganese dioxide      hydroxyapatite      adsorption     
Corresponding Author(s): Zhiliang ZHU   
Online First Date: 12 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Lijing DONG,Zhiliang ZHU,Yanling QIU, et al. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite[J]. Front. Environ. Sci. Eng., 2016, 10(1): 28-36.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0722-5
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/28
property value
specific surface area/(m2·g−1) 56.9
adsorption average pore diameter/nm 10.5
Ca/P ratio 1.70±0.01
HAp content/ (wt.%) 57.3±0.1
pHZPC 7.1±0.1
Tab.1  Physico-chemical properties of HAp/MnO2
Fig.1  XRD pattern of composite adsorbent HAp/MnO2
Fig.2  (a) SEM images and (b) and EDAX analysis of composite adsorbent HAp/MnO2
Fig.3  Initial pH and Pb2+ removal, final solution pH, and pHPZC of HAp/MnO2
Fig.4  Coexisting substances and removal of Pb2+ ions by HAp/MnO2
Fig.5  Langmuir isotherm and the interrelationship among the amounts of Pb2+ and Ca2+ released and final pH of the solution.
Fig.6  XRD patterns of Pb(II)-adsorbed HAp/MnO2
Langmuir adsorption isotherms constants Freundlich adsorption isotherms constants DKR adsorption isotherms constants
qmax/ (mg·g−1) Ke /(L·mg−1) R2 Kf/(mg1-1/n·L1/n·g−1) n R2 Xm/ (mol·g−1) β /(mol2·J−2) R2
769.231 0.419 0.9998 14.879 13.210 0.9864 3.178 −1 × 10−9 0.8500
Tab.2  Langmuir, Freundlich, and DKR constants for adsorption of Pb2+ on HAp/MnO2
adsorbent initial pH initial concentration/(mg·L−1) T/°C dosage/(g·L−1) t/h qmax for Pb2+/(mg·g−1) reference
HAp/MnO2 5±0.1 50–500 25 0.25 24 769 this work
HAp 5±0.1 50–500 25 0.25 24 526 this work
HAp 5±1 200–1000 20±1 5 24 675 [34]
hydrous manganese dioxide 3.5–3.5 25 0.5 24 327 [35]
polymer-supported nanosized hydrous manganese dioxide 5.5 25 24 395 [36]
iron oxide coated sewage sludge 4.0 0–200 25 1 42.4 [37]
amino functionalized nano mesoporous silica 5.0 0–50 25 5 57.7 [38]
co-doped birnessites 5±0.05 0–3000 25 5 24 651 [39]
Tab.3  Adsorption capacities for Pb2+ on different adsorbents
Fig.7  Pseudo-second-order kinetic of Pb2+ adsorption by HAp/MnO2
Fig.8  Pseudo-second-order kinetic of Pb2+ adsorption by HAp/MnO2
eluant desorbed Pb/%
HAc (pH= 2.88) 2.80±0.01
HAc (pH= 5) 0.050±0.001
EDTA (0.001 mol·L−1) 57.9±0.01
H2O (pH= 7) 0.27±0.01
NaOH (pH= 11.85) 0.001±0.001
Ca(NO3)2 (0.1 mol·L−1) 0.22±0.01
Ca(NO3)2 (0.01 mol·L−1) 0.012±0.001
Ca(NO3)2 (0.001 mol·L−1) 0.005±0.001
Tab.4  Pb2+ from loaded HAp/MnO2
1 Vilensky  M Y, Berkowitz  B, Warshawsky  A. In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods. Environmental Science & Technology, 2002, 36(8): 1851–1855
https://doi.org/10.1021/es010313+ pmid: 11993887
2 Rivera-Utrilla  J, Sánchez-Polo  M, Gómez-Serrano  V, Alvarez  P M, Alvim-Ferraz  M C M, Dias  J M. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 2011, 187(1–3): 1–23
pmid: 21306824
3 Wang  S, Yu  D M. Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres. Journal of Applied Polymer Science, 2010, 118(2): 733–739
4 Chen  Y H, Li  F A. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. Journal of Colloid and Interface Science, 2010, 347(2): 277–281
https://doi.org/10.1016/j.jcis.2010.03.050 pmid: 20430397
5 Eloussaief  M, Benzina  M. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 2010, 178(1–3): 753–757
https://doi.org/10.1016/j.jhazmat.2010.02.004 pmid: 20189300
6 Hamidpour  M, Kalbasi  M, Afyuni  M, Shariatmadari  H, Holm  P E, Hansen  H C B. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. Journal of Hazardous Materials, 2010, 181(1–3): 686–691
https://doi.org/10.1016/j.jhazmat.2010.05.067 pmid: 20638963
7 Liao  D, Zheng  W, Li  X, Yang  Q, Yue  X, Guo  L, Zeng  G. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. Journal of Hazardous Materials, 2010, 177(1–3): 126–130
https://doi.org/10.1016/j.jhazmat.2009.12.005 pmid: 20042291
8 Corami  A, Mignardi  S, Ferrini  V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 2007, 146(1–2): 164–170
https://doi.org/10.1016/j.jhazmat.2006.12.003 pmid: 17204364
9 Corami  A, Acapito  F D, Mignardi  S, Ferrini  V. Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering B, 2008, 149(2): 209–213
https://doi.org/10.1016/j.mseb.2007.11.006
10 Corami  A, Mignardi  S, Ferrini  V. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 2008, 317(2): 402–408
https://doi.org/10.1016/j.jcis.2007.09.075 pmid: 17949731
11 Smičiklas  I, Dimović  I, Mitrić  M, Mitrić  M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 2006, 40(12): 2267–2274
https://doi.org/10.1016/j.watres.2006.04.031 pmid: 16766010
12 Jang  S H, Jeong  Y G, Min  B G, Lyoo  W S, Lee  S C. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 2008, 159(2–3): 294–299
https://doi.org/10.1016/j.jhazmat.2008.02.018 pmid: 18430514
13 Jang  S H, Min  B G, Jeong  Y G, Lyoo  W S, Lee  S C. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials, 2008, 152(3): 1285–1292
https://doi.org/10.1016/j.jhazmat.2007.08.003 pmid: 17850963
14 Dong  L J, Zhu  Z L, Qiu  Y L, Zhao  J F. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chemical Engineering Journal, 2010, 165(3): 827–834
https://doi.org/10.1016/j.cej.2010.10.027
15 Feng  Y A, Gong  J L, Zeng  G M, Niu  Q Y, Zhang  H Y, Niu  C G, Deng  J H, Yan  M. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 2010, 162(2): 487–494
https://doi.org/10.1016/j.cej.2010.05.049
16 Bogya  E S, Barabás  R, Csavdári  A, Dejeu  V, Bâldea  I. Hydroxyapatite modified with silica used for sorption of copper. Chemical Paper, 2009, 63(5): 568–573
https://doi.org/10.2478/s11696-009-0059-x
17 Liu  G, Talley  J W, Na  C, Larson  S L, Wolfe  L G. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters. Environmental Science & Technology, 2010, 44(4): 1366–1372
https://doi.org/10.1021/es9015734 pmid: 20095528
18 Tripathya  S S, Bersillona  J L, Gopal  K. Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 2006, 194(1–3): 11–21
https://doi.org/10.1016/j.desal.2005.10.023
19 Kanungo  S B, Tripathy  S S, Rajeev. Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content. Journal of Colloid and Interface Science, 2004, 269(1): 1–10
https://doi.org/10.1016/S0021-9797(03)00464-8 pmid: 14651888
20 Zhu  Z L, Ma  H M, Zhang  R H, Ge  Y X, Zhao  J F. Removal of cadmium using MnO2 loaded D301 resin. Journal of Environmental Sciences (China), 2007, 19(6): 652–656
https://doi.org/10.1016/S1001-0742(07)60109-0 pmid: 17969635
21 Dong  L, Zhu  Z, Ma  H, Qiu  Y, Zhao  J. Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. Journal of Environmental Sciences (China), 2010, 22(2): 225–229
https://doi.org/10.1016/S1001-0742(09)60097-8 pmid: 20397410
22 Parida  K M, Kanungo  S B, Sant  B R. Studies on MnO2 chemical composition, microstucture and other characteristics of some synthetic MnO2 of various crystalline modification. Electrochimica Acta, 1981, 26(3): 435–443
https://doi.org/10.1016/0013-4686(81)85033-5
23 Schwarz  J A, Driscoll  C T, Bhanot  A K. The zero point charge of silica-alumina oxide suspensions. Journal of Colloid and Interface Science, 1984, 97(1): 55–61
https://doi.org/10.1016/0021-9797(84)90274-1
24 Meski  S, Ziani  S, Khireddine  H, Boudboub  S, Zaidi  S. Factorial design analysis for sorption of zinc on hydroxyapatite. Journal of Hazardous Materials, 2011, 186(2–3): 1007–1017
https://doi.org/10.1016/j.jhazmat.2010.11.087 pmid: 21159426
25 Shimabayashi  S, Tamura  C, Nakagaki  M. Adsorption of mono- and divalent metal cations on hydroxyapatite in water. Chemical & Pharmaceutical Bulletin, 1981, 29(8): 2116–2122
https://doi.org/10.1248/cpb.29.2116
26 Tipping  E. Cation Binding by Humic Substances. England: Cambridge University Press, 2002
27 Wang  S B, Terdkiatburana  T, Tadé  M O. Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems. Separation and Purification Technology, 2008, 62(1): 64–70
https://doi.org/10.1016/j.seppur.2008.01.004
28 Terdkiatburana  T, Wang  S B, Tadé  M O. Competition and complexation of heavy metal ions and humic acid on zeolitic MCM-22 and activated carbon. Chemical Engineering Journal, 2008, 139(3): 437–444
https://doi.org/10.1016/j.cej.2007.08.005
29 Stötzel  C, Müller  F A, Reinert  F, Niederdraenk  F, Barralet  J E, Gbureck  U. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces B, 2009, 74(1): 91–95
pmid: 19640688
30 Freundlich  H. Colloid and Capillary Chemistry. London: Methuen, 1926, 993
31 Langmuir  I. The constitution and fundamental properties of solid sand liquids. Part-I.Solids. Journal of the American Chemical Society, 1916, 38(11): 2221–2295
https://doi.org/10.1021/ja02268a002
32 Mobasherpour  I, Salahi  E, Pazouki  M. Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite. Desalination, 2011, 266(1–3): 142–148
https://doi.org/10.1016/j.desal.2010.08.016
33 Wang  C C, Juang  L C, Lee  C K, Hsu  T C, Lee  J F, Chao  H P. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 2004, 280(1): 27–35
https://doi.org/10.1016/j.jcis.2004.07.009 pmid: 15476770
34 Smičiklas  I, Onjia  A, Raicević  S, Janaćković  D, Mitrić  M. Factors influencing the removal of divalent cations by hydroxyapatite. Journal of Hazardous Materials, 2008, 152(2): 876–884
https://doi.org/10.1016/j.jhazmat.2007.07.056 pmid: 17764836
35 Su  Q, Pan  B, Wan  S, Zhang  W, Lv  L. Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. Journal of Colloid and Interface Science, 2010, 349(2): 607–612
https://doi.org/10.1016/j.jcis.2010.05.052 pmid: 20580012
36 Su  Q, Pan  B, Pan  B, Zhang  Q, Zhang  W, Lv  L, Wang  X, Wu  J, Zhang  Q. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment, 2009, 407(21): 5471–5477
https://doi.org/10.1016/j.scitotenv.2009.06.045 pmid: 19640564
37 Phuengprasop  T, Sittiwong  J, Unob  F. Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of Hazardous Materials, 2011, 186(1): 502–507
https://doi.org/10.1016/j.jhazmat.2010.11.065 pmid: 21167637
38 Heidari  A, Younesi  H, Mehraban  Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal, 2009, 153(1–3): 70–79
https://doi.org/10.1016/j.cej.2009.06.016
39 Yin  H, Feng  X, Qiu  G, Tan  W, Liu  F. Characterization of Co-doped birnessites and application for removal of lead and arsenite. Journal of Hazardous Materials, 2011, 188(1–3): 341–349
https://doi.org/10.1016/j.jhazmat.2011.01.129 pmid: 21345580
40 Ho  Y S, McKay  G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
https://doi.org/10.1016/S0032-9592(98)00112-5
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[5] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[6] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed