Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 19-27    https://doi.org/10.1007/s11783-014-0723-4
RESEARCH ARTICLE
Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments
Shou ZHAO1,2,Dongxin WANG1,Chenghong FENG1,*(),Ying WANG1,Zhenyao SHEN1
1. Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
2. Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, IN 47907, USA
 Download: PDF(495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal speciation can provide sufficient information for environmental and geochemical researches. In this study, based on the speciation determination of Cu and Zn in the Yangtze Estuary sediments, roles of eight geochemical controls (i.e., total organic carbon (TOC), clay, Fe/Mn in five chemical fractions and salinity) are fully investigated and sequenced with correlation analysis (CA) and principal components analysis (PCA). Results show that TOC, clay and Fe/Mn oxides are key geochemical factors affecting the chemical speciation distributions of Cu and Zn in sediments, while the role of salinity appears to be more indirect effect. The influencing sequence generally follows the order: TOC>clay>Mn oxides>Fe oxides>salinity. Among the different fractions of Fe/Mn oxides, residual and total Fe content, and exchangeable and carbonate Mn exert the greatest influences, while exchangeable Fe and residual Mn show the poorest influences.

Keywords chemical speciation      geochemical factors      estuaries      sediments      correlation      salinity     
Corresponding Author(s): Chenghong FENG   
Online First Date: 11 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Shou ZHAO,Dongxin WANG,Chenghong FENG, et al. Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments[J]. Front. Environ. Sci. Eng., 2016, 10(1): 19-27.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0723-4
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/19
Fig.1  Study area and geographical location of the 30 sampling sites in the Yangtze Estuary in China
F1 F2 F3 F4 F5 F6
Cu/(mg·kg−1)
?Min. 0.075 0.806 0.661 0.481 6.795 9.500
?Max. 0.193 3.772 4.363 5.992 25.82 37.60
?average 0.122 1.985 2.376 2.717 16.65 23.85
?Stand. dev. 0.031 0.782 1.087 1.677 6.048 8.980
Zn (mg·kg−1)
?Min. 0.220 2.123 4.111 1.630 29.93 41.00
?Max. 0.575 18.17 13.65 11.18 76.71 101.0
?average 0.294 6.321 7.921 6.443 57.09 78.01
?Stand. dev. 0.073 3.678 2.482 2.758 16.11 17.79
Mn (mg·kg−1)
?Min. 3.458 42.45 64.81 21.17 171.4 359.0
?Max. 48.43 503.2 243.1 86.63 435.3 1108.0
?average 21.27 250.9 141.1 47.10 254.9 715.4
?Stand. dev. 13.42 125.0 52.12 17.73 49.66 180.3
Fe (mg·kg−1)
?Min. 0.267 65.23 1668.6 276.9 20752.8 23633.1
?Max. 8.823 1353.1 8632.6 2615.6 38260.3 47716.1
?average 2.538 381.1 4450.9 964.3 30013.9 35813.0
?Stand. dev. 1.901 350.4 1925.9 552.1 4734.6 6860.4
TOC/% clay/% salinity/(parts per thousand, ‰)
?Min. 0.098 0.470 0.130
?Max. 0.767 100.0 36.47
?average 0.438 61.26 13.66
?Stand. dev. 0.206 40.52 15.43
Tab.1  Minimum, maximum, average values and standard deviations of geochemical factors and Cu and Zn in different fractions
geochemical controls parameter Cu speciation Zn speciation
F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
TOC k 0.115 2.394 4.454 6.707 27.59 41.26 −0.120 −6.855 3.313 8.623 74.37 79.33
R2 0.76** 0.63** 0.84** 0.82** 0.94** 0.94** −0.33 −0.38 0.27 0.64** 0.95** 0.92**
clay content k 0.001 0.011 0.022 0.035 0.137 0.207 −0.001 −0.042 0.013 0.048 0.382 0.400
R2 0.68** 0.59** 0.82** 0.85** 0.92** 0.93** −0.38* −0.46** 0.21 0.70** 0.96** 0.91**
total loadings k 0.003 0.067 0.113 0.153 0.665 −0.001 −0.041 0.064 0.109 0.869
R2 0.73** 0.76** 0.93** 0.81** 0.98** −0.27 −0.19 0.45* 0.70** 0.95**
salinity k 0.001 −0.003 0.021 0.029 0.162 0.209 −0.002 −0.157 0.004 0.106 0.405 0.357
R2 0.31 −0.06 0.29 0.27 0.41* 0.35* −0.41* −0.65** 0.02 0.59** 0.38* 0.30
Tab.2   Linear fits parameters of TOC, clay content, total metal content and salinity, with Cu and Zn contents in different speciation
Fe–F1 Fe–F2 Fe–F3 Fe–F4 Fe–F5 Fe–F6 Mn–F1 Mn–F2 Mn–F3 Mn–F4 Mn–F5 Mn–F6
Cu–F1 –0.14 0.36* 0.52** 0.38* 0.62** 0.62** 0.62** 0.55** 0.40* 0.47** –0.27 0.52**
Cu–F2 –0.18 0.40* 0.60** 0.28 0.55** 0.59** 0.66** 0.61** 0.61** 0.42* –0.15 0.65**
Cu–F3 –0.35 0.32 0.66** 0.38* 0.72** 0.73** 0.86** 0.74** 0.63** 0.61** –0.28 0.74**
Cu–F4 –0.25 0.67** 0.86** 0.82** 0.73** 0.84** 0.75** 0.84** 0.68** 0.92** –0.37* 0.82**
Cu–F5 –0.32 0.46** 0.68** 0.48** 0.88** 0.86** 0.91** 0.81** 0.54** 0.68** –0.26 0.78**
Cu–F6 –0.32 0.51** 0.75** 0.55** 0.87** 0.88** 0.92** 0.85** 0.62** 0.74** –0.29 0.83**
Zn–F1 0.31 –0.13 –0.22 –0.29 –0.22 –0.25 –0.24 –0.32 –0.12 –0.35 0.13 –0.27
Zn–F2 0.49** –0.08 –0.16 –0.28 –0.30 –0.28 –0.38* –0.35 –0.07 –0.34 0.33 –0.24
Zn–F3 –0.10 –0.22 0.13 –0.10 0.23 0.17 0.43* 0.24 0.20 0.11 –0.01 0.26
Zn–F4 –0.39* 0.32 0.50** 0.61** 0.57** 0.60** 0.61** 0.71** 0.30 0.72** –0.38* 0.59**
Zn–F5 –0.32 0.53** 0.78** 0.69** 0.92** 0.93** 0.88** 0.90** 0.61** 0.84** –0.27 0.87**
Zn–F6 –0.27 0.47** 0.76** 0.64** 0.89** 0.90** 0.87** 0.88** 0.62** 0.81** –0.24 0.87**
TOC –0.32 0.56** 0.82** 0.66** 0.86** 0.91** 0.88** 0.87** 0.66** 0.81** –0.41* 0.83**
clay –0.34 0.54** 0.82** 0.69** 0.86** 0.91** 0.87** 0.89** 0.64** 0.84** –0.41* 0.83**
salinity –0.48** –0.13 –0.02 0.10 0.23 0.15 0.41* 0.28 –0.20 0.21 –0.33 0.09
Tab.3  Correlation of Cu and Zn contents in different fractions with Fe and Mn in different fraction, as well as other geochemical factors including TOC, clay and salinity. Mn correlated better with metals than Fe. For the non–lithogenic speciation of Cu and Zn, the organic fractions correlated best with Fe/Mn
component initial eigenvalues element component matrix
total % of variance cumulative % PC1 PC2 PC3
1 16.39 60.71 60.71 Salinity 0.327 –0.793 0.313
2 2.894 10.71 71.42 Clay 0.969 –0.125 0.015
3 2.444 9.052 80.48 TOC 0.968 –0.042 0.064
4 1.134 4.202 84.68 Fe–F1 –0.314 0.533 –0.335
5 0.877 3.250 87.93 Fe–F2 0.604 0.227 –0.552
6 0.824 3.051 90.98 Fe–F3 0.864 0.248 –0.354
7 0.619 2.294 93.27 Fe–F4 0.747 0.011 –0.571
8 0.458 1.695 94.97 Fe–F5 0.891 0.081 0.049
9 0.400 1.481 96.45 Fe–F6 0.949 0.138 –0.140
10 0.223 0.827 97.28 Mn–F1 0.899 –0.058 0.296
11 0.184 0.680 97.96 Mn–F2 0.941 –0.007 –0.089
12 0.147 0.543 98.50 Mn–F3 0.730 0.383 –0.263
13 0.131 0.483 98.98 Mn–F4 0.895 –0.009 –0.322
14 0.090 0.332 99.31 Mn–F5 –0.365 0.285 0.144
15 0.050 0.184 99.50 Mn–F6 0.917 0.179 –0.108
16 0.049 0.181 99.68 Cu–F1 0.686 0.083 0.276
17 0.032 0.118 99.80 Cu–F2 0.673 0.464 0.366
18 0.017 0.065 99.86 Cu–F3 0.858 0.113 0.408
19 0.013 0.049 99.91 Cu–F4 0.903 –0.032 –0.220
20 0.010 0.038 99.95 Cu–F5 0.925 –0.033 0.267
21 0.009 0.032 99.98 Cu–F6 0.958 0.027 0.221
22 0.002 0.009 99.99 Zn–F1 –0.351 0.548 0.121
23 0.001 0.005 100.0 Zn–F2 –0.369 0.810 0.141
24 0.000 0.000 100.0 Zn–F3 0.295 0.417 0.738
25 0.000 0.000 100.0 Zn–F4 0.716 –0.423 –0.042
26 0.000 0.000 100.0 Zn–F5 0.967 –0.088 0.032
27 0.000 0.000 100.0 Zn–F6 0.950 0.082 0.158
Tab.4  Component loadings obtained from the principal component analysis. TOC, clay, Fe and Mn were main factors influencing the transport of Cu and Zn, while the role of salinity was much indirect
Tab.5  Sequences of roles of geochemical factors in affecting the fraction distributions of Cu and Zn. The sequence was ordered according to the correlation coefficient.
1 Wang  Z L, Liu  C Q. Distribution and partition behavior of heavy metals between dissolved and acid–soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chemical Geology, 2003, 202(3–4): 383–396
https://doi.org/10.1016/j.chemgeo.2002.05.001
2 Filgueiras  A V, Lavilla  I, Bendicho  C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Science of the Total Environment, 2004, 330(1–3): 115–129
https://doi.org/10.1016/j.scitotenv.2004.03.038 pmid: 15325163
3 Eggleton  J, Thomas  K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 2004, 30(7): 973–980
https://doi.org/10.1016/j.envint.2004.03.001 pmid: 15196845
4 Beck  M, Böning  P, Schückel  U, Stiehl  T, Schnetger  B, Rullkötter  J, Brumsack  H J. Consistent assessment of trace metal contamination in surface sediments and suspended particulate matter: a case study from the Jade Bay in NW Germany. Marine Pollution Bulletin, 2013, 70(1–2): 100–111
https://doi.org/10.1016/j.marpolbul.2013.02.017 pmid: 23490348
5 Liu  B, Hu  K, Jiang  Z, Yang  J, Luo  X, Liu  A. Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 2011, 62(2): 265–275
https://doi.org/10.1007/s12665-010-0520-8
6 Sander  S G, Hunter  K A, Harms  H, Wells  M. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability. Environmental Science & Technology, 2011, 45(15): 6388–6395
https://doi.org/10.1021/es200113v pmid: 21751821
7 Yang  Z, Wang  Y, Shen  Z, Niu  J, Tang  Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 2009, 166(2–3): 1186–1194
https://doi.org/10.1016/j.jhazmat.2008.12.034 pmid: 19179000
8 Passosa  E, Alves  J, Santos  I, Alves  J, Garcia  C, Costa  A. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchemical Journal, 2010, 96(1): 50–57
https://doi.org/10.1016/j.microc.2010.01.018
9 Chakraborty  P, Babu  P V, Sarma  V V. A study of lead and cadmium speciation in some estuarine and coastal sediments. Chemical Geology, 2012, 294:  217–225
https://doi.org/10.1016/j.chemgeo.2011.11.026
10 Zhao  X, Dong  D, Hua  X, Dong  S. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Journal of Hazardous Materials, 2009, 170(2–3): 570–577
https://doi.org/10.1016/j.jhazmat.2009.05.026 pmid: 19500903
11 Tessier  A, Campbell  P G C, Bisson  M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
12 Wen  L S, Warnken  K W, Santschi  P H. The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry, 2008, 112(1): 20–37
https://doi.org/10.1016/j.marchem.2008.06.003
13 Dai  Y, Yin  L, Niu  J. Laccase-carrying electrospun fibrous membranes  for  adsorption  and  degradation  of  PAHs  in  shoal soils. Environmental Science & Technology, 2011, 45(24): 10611–10618
https://doi.org/10.1021/es203286e pmid: 22047140
14 Zhao  S, Feng  C, Huang  X, Li  B, Niu  J, Shen  Z. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite. Journal of Hazardous Materials, 2012, 203–204: 317–325
https://doi.org/10.1016/j.jhazmat.2011.12.035 pmid: 22226720
15 Owojori  O J, Reinecke  A J, Rozanov  A B. Role of clay content in partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 2009, 72(1): 99–107
https://doi.org/10.1016/j.ecoenv.2008.06.007 pmid: 18715644
16 Garnier  J M, Guieu  C. Release of cadmium in the Danube estuary: contribution of physical and chemical processes as determined by an experimental approach. Marine Environmental Research, 2003, 55(1): 5–25
https://doi.org/10.1016/S0141-1136(02)00107-1 pmid: 12469773
17 Calmano  W, Hong  J, Förstner  U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 1993, 28(8): 223–235
18 Du Laing  G, Rinklebe  J, Vandecasteele  B, Meers  E, Tack  F M. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 2009, 407(13): 3972–3985
https://doi.org/10.1016/j.scitotenv.2008.07.025 pmid: 18786698
19 Förstner  U, Ahlf  W, Calmano  W. Studies on the transfer of heavy metals between sedimentary phases with a multi–chamber device: combined effects of salinity and redox variation. Marine Chemistry, 1989, 28(1): 145–158
https://doi.org/10.1016/0304-4203(89)90192-8
20 Acosta  J A, Jansen  B, Kalbitz  K, Faz  A, Martínez-Martínez  S. Salinity increases mobility of heavy metals in soils. Chemosphere, 2011, 85(8): 1318–1324
https://doi.org/10.1016/j.chemosphere.2011.07.046 pmid: 21862104
21 Zhao  S, Feng  C, Wang  D, Liu  Y, Shen  Z. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere, 2013, 91(7): 977–984
https://doi.org/10.1016/j.chemosphere.2013.02.001 pmid: 23478125
22 Wong  V, Johnston  S, Burton  E, Bush  R, Sullivan  L, Slavich  P. Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality. Geoderma, 2010, 160(2): 252–263
https://doi.org/10.1016/j.geoderma.2010.10.002
23 Saito  Y, Yang  Z, Hori  K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 2001, 41(2): 219–231
https://doi.org/10.1016/S0169-555X(01)00118-0
24 Li  B, Feng  C, Li  X, Chen  Y, Niu  J, Shen  Z. Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Marine Pollution Bulletin, 2012, 64(3): 636–643
https://doi.org/10.1016/j.marpolbul.2011.12.005 pmid: 22245436
25 Elzinga  E J, Cirmo  A. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Journal of Hazardous Materials, 2010, 183(1–3): 145–154
https://doi.org/10.1016/j.jhazmat.2010.06.130 pmid: 20674158
26 Giacomino  A, Malandrino  M, Abollino  O, Velayutham  M, Chinnathangavel  T, Mentasti  E. An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination. Environmental Pollution, 2010, 158(2): 416–423
https://doi.org/10.1016/j.envpol.2009.08.010 pmid: 19783338
27 Shao  M, Zhang  T, Fang  H H. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation. Water Research, 2009, 43(12): 2961–2968
https://doi.org/10.1016/j.watres.2009.04.016 pmid: 19476962
28 Naji  A, Ismail  A, Ismail  A R. Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchemical Journal, 2010, 95(2): 285–292
https://doi.org/10.1016/j.microc.2009.12.015
29 Su  D C, Wong  J W C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, 2004, 29(7): 895–900
https://doi.org/10.1016/S0160-4120(03)00052-7 pmid: 14592566
30 Banerjee  A D K. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 2003, 123(1): 95–105
https://doi.org/10.1016/S0269-7491(02)00337-8 pmid: 12663209
31 Sundaray  S K, Nayak  B B, Lin  S, Bhatta  D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of Hazardous Materials, 2011, 186(2–3): 1837–1846
https://doi.org/10.1016/j.jhazmat.2010.12.081 pmid: 21247687
32 Chao  T T. Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 1984, 20(2): 101–135
https://doi.org/10.1016/0375-6742(84)90078-5
33 Wang  X, Li  Y. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals. Journal of Hazardous Materials, 2011, 189(3): 719–723
https://doi.org/10.1016/j.jhazmat.2011.03.045 pmid: 21466918
34 Plach  J M, Elliott  A V C, Droppo  I G, Warren  L A. Physical and ecological controls on freshwater floc trace metal dynamics. Environmental Science & Technology, 2011, 45(6): 2157–2164
https://doi.org/10.1021/es1031745 pmid: 21322631
35 Rath  P, Panda  U C, Bhatta  D, Sahu  K C. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials, 2009, 163(2–3): 632–644
https://doi.org/10.1016/j.jhazmat.2008.07.048 pmid: 18762380
36 Goh  B P L, Chou  L M. Heavy metal levels in marine sediments of Singapore. Environmental Monitoring and Assessment, 1997, 44(1–3): 67–80
https://doi.org/10.1023/A:1005763918958
37 Turner  A. Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 2010, 60(2): 159–171
https://doi.org/10.1016/j.marpolbul.2009.12.004 pmid: 20060546
38 Xian  X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 1989, 113(2): 257–264
https://doi.org/10.1007/BF02280189
39 Yuan  C G, Shi  J B, He  B, Liu  J F, Liang  L N, Jiang  G B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004, 30(6): 769–783
https://doi.org/10.1016/j.envint.2004.01.001 pmid: 15120195
40 Li  Q, Wu  Z, Chu  B, Zhang  N, Cai  S, Fang  J. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 2007, 149(2): 158–164
https://doi.org/10.1016/j.envpol.2007.01.006 pmid: 17321652
41 Sundaray  S K, Nayak  B B, Lin  S, Bhatta  D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of Hazardous Materials, 2011, 186(2–3): 1837–1846
https://doi.org/10.1016/j.jhazmat.2010.12.081 pmid: 21247687
42 Lasheen  M R, Ammar  N S. Speciation of some heavy metals in River Nile sediments, Cairo, Egypt. Environmentalist, 2009, 29(1): 8–16
https://doi.org/10.1007/s10669-008-9175-3
43 Nordmyr  L, Österholm  P, Aström  M. Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils. Marine Environmental Research, 2008, 66(3): 378–393
https://doi.org/10.1016/j.marenvres.2008.06.001 pmid: 18657315
44 Turner  A. Trace metal contamination in sediments from UK estuaries: an empirical evaluation of the role of hydrous iron and manganese oxides. Estuarine, Coastal and Shelf Science, 2000, 50(3): 355–371
https://doi.org/10.1006/ecss.1999.0573
[1] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[2] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[3] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[6] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[7] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[8] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[9] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[10] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[11] Xiaolu ZHANG,Hongwei YANG,Xiaofeng WANG,Yu ZHAO,Xiaomao WANG,Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[12] Xiaolong WANG,Shiming DING,Qi ZHANG,Weiping HU. Assessment on contaminations in sediments of an intake and the inflow canals in Taihu Lake, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 665-674.
[13] Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU. Effect of seawater salinity on the synthesis of zeolite from coal fly ash[J]. Front Envir Sci Eng, 2014, 8(1): 54-61.
[14] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
[15] Ruiping LIU, Wei XU, Kun WU, Wenxin GONG, Huijuan LIU, Jiuhui QU. Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater into a river[J]. Front Envir Sci Eng, 2013, 7(4): 568-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed