Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 96-104    https://doi.org/10.1007/s11783-014-0724-3
RESEARCH ARTICLE
Preparation of a permanent magnetic hypercrosslinked resin and assessment of its ability to remove organic micropollutants from drinking water
Wei WANG,Yan MA,Qing ZHOU(),Chendong SHUANG,Mancheng ZHANG,Aimin LI
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
 Download: PDF(396 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslinking reaction and found to possess a high specific surface area of 1149.7 m2·g-1, a small particle size of 50 μm to 100 μm, and a saturation magnetization as high as 8 emu·g-1. W150 was used to eliminate nitrofurazone (NFZ) and oxytetracycline (OTC) from drinking water compared with commercial adsorbents XAD-4 and F400D. The adsorption kinetics of NFZ and OTC onto the three adsorbents well fitted the pseudo-second-order equation (r>0.972), and the adsorption isotherms were all well described by the Freundlich equation (r>0.851). Results showed that the reduction in adsorbent size and the enlargement in sorbent pores both accelerated adsorption. Moreover, the effect of particle size on adsorption was more significant than that of pore width. Given that the smallest particle size and the highest specific surface area were possessed by W150, it had the fastest adsorption kinetics and largest adsorption capacity for NFZ (180 mg·g-1) and OTC (200 mg·g-1). For the adsorbents with dominant micropores, the sorption of large-sized adsorbates decreased because of the inaccessible micropores. The solution pH and ionic strength also influenced adsorption.

Keywords permanent magnetic resin      organic micropollutant      pore size      molecular size      adsorption     
Corresponding Author(s): Qing ZHOU   
Online First Date: 19 June 2014    Issue Date: 31 December 2014
 Cite this article:   
Wei WANG,Yan MA,Qing ZHOU, et al. Preparation of a permanent magnetic hypercrosslinked resin and assessment of its ability to remove organic micropollutants from drinking water[J]. Front. Environ. Sci. Eng., 2015, 9(1): 96-104.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0724-3
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/96
Fig.1  Characterization of obtained resins: (a) SEM image of W150, (b) FT-IR sprctra of W150 and precursor beads, (c) magnetization curve of W150, and (d) image of W150 in water taken by Nikon Eclipse Ti-S
particle size /μm surface area /(m2·g-1) average pore size /nm micropore volume /(cm3·g-1) mesoporous volume /(cm3·g-1)
W150 50-100 1149.7 3.3 0.18 0.66
XAD-4 400-600 846.8 5.8 0.07 1.00
F400D 500-800 831.7 2.5 0.34 0.18
Tab.1  Physicochemical properties of the used adsorbents
Fig.2  Chemical structure and molecular size of (a) NFZ and (b) OTC
Fig.3  Adsorption kinetics of (a) NFZ and (b) OTC onto the three adsorbents
adsorbates adsorbents pseudo-first-order model pseudo-second-order model
qe /(mg·g-1) k1 /(10-2, min-1) r qe /(mg·g-1) k2 /(10-4, g·mg-1·min) r
NFZ W150 183.68 3.053 0.996 202.61 2.04 0.988
XAD-4 132.67 1.744 0.955 151.16 1.48 0.972
F400D 148.45 0.623 0.99 201.98 0.26 0.989
OTC W150 204.46 2.68 0.981 246.73 1.131 0.986
XAD-4 187.83 2.44 0.967 227.49 1.129 0.979
F400D 120.41 1.28 0.988 170.72 0.576 0.998
Tab.2  Kinetic parameters for the adsorption of NFZ and OTC onto the adsorbents
adsorbates adsorbent T/K Langmuir model Freundlich model
Kl /(10-2, L·mg-1) qm /(mg·g-1) r Kf /(L·mg-1) n r
NFZ W150 278 1.47 360.17 0.979 15.857 1.747 0.988
293 2.03 209.95 0.917 16.899 2.162 0.934
308 1.167 180.24 0.990 7.378 1.789 0.973
XAD-4 278 1.727 181.59 0.820 12.978 2.11 0.851
293 0.42 258.39 0.838 2.606 1.366 0.864
308 0.483 146.72 0.939 1.892 1.432 0.961
F400D 278 3.945 230.33 0.996 36.392 2.79 0.995
293 2.083 253.00 0.985 19.519 2.102 0.984
308 1.445 264.17 0.985 12.916 1.839 0.994
OTC W150 278 0.466 305.32 0.941 15.402 1.852 0.934
293 0.704 278.91 0.978 55.906 3.104 0.973
308 1.415 386.39 0.958 77.889 2.887 0.965
XAD-4 278 1.376 245.54 0.953 12.088 1.865 0.962
293 1.527 313.19 0.989 16.100 1.856 0.979
308 2.233 295.75 0.959 24.379 2.14 0.974
F400D 278 0.23 352.08 0.967 5.966 0.183 0.952
293 1.526 189.05 0.857 39.854 0.408 0.945
308 2.86 247.42 0.758 55.661 0.539 0.913
Tab.3  Constants for the Langmuir and Freundlich equations at 278, 293, and 308 K
Fig.4  Adsorption isotherms of NFZ on (a) W150, (c) XAD-4, (e) F400D and OTC on (b) W150, (d) XAD-4, (f) F400D at 278 K, 293 K, 308 K
Fig.5  Effects of the solution pH on the adsorption of (a) NFZ and (b) OTC onto the three adsorbents
Fig.6  Effects of the ionic strength of the solution on the adsorption of (a) NFZ and (b) OTC onto the three adsorbents
1 Bound J P, Voulvoulis N. Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies. Chemosphere, 2004, 56(11): 1143–1155
https://doi.org/10.1016/j.chemosphere.2004.05.010 pmid: 15276728
2 Prado N, Ochoa J, Amrane A. Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor. Bioresource Technology, 2009, 100(15): 3769–3774
https://doi.org/10.1016/j.biortech.2008.11.039 pmid: 19162474
3 Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 2007, 68(3): 428–435
https://doi.org/10.1016/j.chemosphere.2007.01.008 pmid: 17316751
4 Kosutic K, Dolar D, Asperger D, Kunst B. Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology, 2007, 53(3): 244–249
https://doi.org/10.1016/j.seppur.2006.07.015
5 Wang P, He Y L, Huang C H. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Research, 2011, 45(4): 1838–1846
https://doi.org/10.1016/j.watres.2010.11.039 pmid: 21168893
6 Wang Y, Zhang H, Zhang J, Lu C, Huang Q, Wu J, Liu F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. Journal of Hazardous Materials, 2011, 192(1): 35–43
pmid: 21616591
7 Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, Alvarez P J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environmental Toxicology and Chemistry, 2010, 29(12): 2713–2719
https://doi.org/10.1002/etc.350 pmid: 20836069
8 Ji L, Wan Y, Zheng S, Zhu D. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. Environmental Science & Technology, 2011, 45(13): 5580–5586
https://doi.org/10.1021/es200483b pmid: 21649440
9 Richter M K, Sander M, Krauss M, Christl I, Dahinden M G, Schneider M K, Schwarzenbach R P. Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environmental Science & Technology, 2009, 43(17): 6632–6638
https://doi.org/10.1021/es900946u pmid: 19764228
10 Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 2007, 41(1): 132–138
https://doi.org/10.1021/es061198b pmid: 17265938
11 Xue S, Zhao Q L, Wei L L, Hui X J, Ma X P, Lin Y Z. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering, 2013, 6(6): 784–796
12 Ma Y, Gao N Y, Chu W H, Li C. Removal of phenol by powdered activated carbon adsorption. Frontiers of Environmental Science & Engineering, 2013, 7(2): 158–165
https://doi.org/10.1007/s11783-012-0479-7
13 Zhou Q, Wang M Q, Li A M, Shuang C D, Zhang M C, Liu X H, Wu L Y. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid. Frontiers of Environmental Science & Engineering, 2013, 7(2): 412–419
https://doi.org/10.1007/s11783-013-0483-6
14 Tsyurup M P, Davankov V A. Porous Structure of Hypercrosslinked Polystyrene: State-of-the-Art Mini-Review. Reactive & Functional Polymers, 2006, 66(7): 768–779
https://doi.org/10.1016/j.reactfunctpolym.2005.11.004
15 Valderrama C, Cortina J L, Farran A, Gamisans X, Lao C. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200). Journal of Colloid and Interface Science, 2007, 310(1): 35–46
https://doi.org/10.1016/j.jcis.2007.01.039 pmid: 17367802
16 Zhou Y, Shuang C D, Zhou Q, Zhang M C, Li P H, Li A M. Preparation and application of a novel magnetic anion exchange resin for selective nitrate removal. Chinese Chemical Letters, 2012, 23(7): 813–816
https://doi.org/10.1016/j.cclet.2012.05.010
17 Shuang C, Li P, Li A, Zhou Q, Zhang M, Zhou Y. Quaternized magnetic microspheres for the efficient removal of reactive dyes. Water Research, 2012, 46(14): 4417–4426
https://doi.org/10.1016/j.watres.2012.05.052 pmid: 22726352
18 Zhou Q, Zhang M C, Shuang C D, Li Z Q, Li A M. Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment. Chinese Chemical Letters, 2012, 23(6): 745–748
https://doi.org/10.1016/j.cclet.2012.01.039
19 Zhou Q, Li Z Q, Shuang C D, Li A M, Zhang M C, Wang M Q. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chemical Engineering Journal, 2012, 210: 350–356
https://doi.org/10.1016/j.cej.2012.08.081
20 Zhou Q, Li Z Q, Shuang C D, Li A M, Wang M Q, Zhang M C. Preparation of acid-resistant magnetic adsorbent for effective removal of p-nitrophenol. Chinese Chemical Letters, 2012, 23(9): 1079–1082
https://doi.org/10.1016/j.cclet.2012.07.001
21 Zhang M, Zhou Q, Li A, Shuang C, Wang W, Wang M. A magnetic sorbent for the efficient and rapid extraction of organic micropollutants from large-volume environmental water samples. Journal of Chromatography. A, 2013, 1316: 44–52
https://doi.org/10.1016/j.chroma.2013.09.086 pmid: 24120026
22 Martin J E, Venturini E, Odinek J, Anderson R A. Anisotropic magnetism in field-structured composites. Physical Review, 2000, 61(3): 2818–2830
23 Zhang M C, Li A M, Zhou Q, Shuang C D, Zhou W W, Wang M Q. Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Microporous and Mesoporous Materials, 2014, 184: 105–111
https://doi.org/10.1016/j.micromeso.2013.10.010
24 Yang W, Zheng F, Xue X, Lu Y. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 2011, 362(2): 503–509
https://doi.org/10.1016/j.jcis.2011.06.071 pmid: 21803367
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[6] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[11] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[12] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed