Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 138-146    https://doi.org/10.1007/s11783-014-0725-2
RESEARCH ARTICLE
The influence of chlorinated aromatics' structure on their adsorption characteristics on activated carbon to tackle chemical spills in drinking water source
Pengfei LIN1,Yuan ZHANG1,Xiaojian ZHANG1,Chao CHEN1,*(),Yuefeng XIE1,2,Irwin H SUFFET3
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Environmental Programs, Pennsylvania State University, Middletown, PA 17057, USA
3. Department of Environment Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
 Download: PDF(486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study focused on evaluating the efficiency of powdered activated carbon (PAC) adsorption process and tackling chlorobenzenes and chlorophenols spill in drinking water source. The adsorption kinetics and PAC’s capacities for five chlorobenzenes and three chlorophenols at drinking water contamination levels were studied in order to determine the influence of different functional groups on the adsorption behavior. The results showed that PAC adsorption could be used as an effective emergency drinking water treatment process to remove these compounds. The adsorption kinetics took 30 min to achieve nearly equilibrium and could be described by both pseudo first-order and pseudo second-order models. A mathematic relationship was developed between the pseudo first-order adsorption rate constant, k1, and the solutes’ properties including lgKow, polarizability and molecular weight. The Freundlich isotherm equation could well describe the adsorption equilibrium behaviors of chlorinated aromatics with r2 from 0.920 to 0.999. The H-bond donor/acceptor group, hydrophobicity, solubility and molecular volume were identified as important solute properties that affect the PAC adsorption capacity. These results could assist water professionals in removing chlorinated aromatics during emergency drinking water treatment.

Keywords chlorinated aromatics      adsorption      powdered activated carbon      kinetics      equilibrium     
Corresponding Author(s): Chao CHEN   
Online First Date: 26 June 2014    Issue Date: 31 December 2014
 Cite this article:   
Pengfei LIN,Yuan ZHANG,Xiaojian ZHANG, et al. The influence of chlorinated aromatics' structure on their adsorption characteristics on activated carbon to tackle chemical spills in drinking water source[J]. Front. Environ. Sci. Eng., 2015, 9(1): 138-146.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0725-2
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/138
chemicals structure molecular weight1/(g·mol-1) molecular volume1/nm3 polariz-ability1 pKa1 lgKow1 solubility1/(mg·L-1) drinking waterstandards/(mg·L-1)
China2 USA3
2,4-dichloro-phenol 163 0.118 14.75 7.89 3.10 1100 0.093 -
2,4,6- trichloro-phenol 197 0.132 16.73 6.59 3.58 900 0.2 /
pentachloro-phenol 266 0.161 20.81 4.68 5.12 14.0 0.009 0.001
chloro-benzene 113 0.096 12.19 / 2.84 440 0.3 0.1
1,2-dichloro-benzene 147 0.110 14.11 / 3.28 140 1.0 0.6
1,4- dichloro-benzene 147 0.110 14.07 / 3.34 72.0 0.3 0.075
1,3,5-trichloro-benzene 181 0.124 16.02 / 4.19 6.01 0.02 0.074
hexachloro-benzene 285 0.166 22.12 / 5.75 0.0078 0.001 0.001
Tab.1  Basic information of the tested chemicals
iodine value /(mg·L-1) methylene blue value/(mg·L-1) ash content 200 mesh passing rate micropore volume /(cm3·g-1) specific surface area /(m2·g-1)
903 142 <12% >90% 0.46 853
percentage of pore volume with different diameter /%
<2nm 2-3 nm 3-5 nm 5-10 nm 10-20 nm >20 nm
42.3 14.3 16.3 12.4 6.6 8.0
Tab.2  Physical characteristics and pore size distribution of PAC
chemical categories solutes C0/(mg·L-1) observed capacity qe /(mg·g-1) pseudo first-order model pseudo second-order model
k1/(mg.g-1.min-1) r2 calculated qe /(mg·g-1) k2/(mg.g-1.min-1) r2 calculated qe /(mg·g-1)
chloro-phenols 2,4-dichlorophenol 0.471 21.5 0.13 0.98 21.8 0.013 1.0 22.2
2,4,6- trichlorophenol 1.0 48.8 0.26 1.0 47.4 0.013 1.0 49.0
pentachloro-phenol 0.048 2.12 0.084 0.98 2.0 0.053 1.0 2.2
chloro-benzenes chlorobenzene 1.6 72.2 0.19 0.98 68.5 0.0030 0.99 76.9
1,2-dichlorobenzene 4.4 143 0.19 0.99 136.7 0.0023 1.0 144.9
1,4- dichlorobenzene 1.6 72.5 0.24 0.99 68.8 0.0046 1.0 73.1
1,3,5-trichloro-benzene 0.097 4.83 0.42 1.0 4.8 0.66 1.0 4.8
hexachloro-benzene 0.037 1.78 0.16 1.0 1.8 0.28 0.98 1.8
Tab.3  Adsorption kinetic parameters of the chlorinated aromatic compounds
Fig.9  The relationship between different adsorbates adsorption rate and product of their physicochemical properties (powder activated carbon dosage= 20 mg·L-1, Temperature= 25°C and pH= 7.2)
Fig.10  Comparison of adsorption capacity for 2,4-dichlorophenol (a), 2,4,6-trichlorophenol (b), pentachlorophenol (c) and five chlorobenzenes (d) onto PAC
Fig.11  Partial charge distribution for 1,3,5-trichlorobenzene (a) and 2,4,6-trichlorophenol (b)
1 Andreozzi R, Canterino M, Marotta R. Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light. Water Research, 2006, 40(20): 3785–3792
https://doi.org/10.1016/j.watres.2006.05.029 pmid: 17049962
2 Durimel A, Altenor S, Miranda-Quintana R, Couespel Du Mesnil P, Jauregui-Haza U, Gadiou R, Gaspard S. pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chemical Engineering Journal, 2013, 229(0): 239–249
https://doi.org/10.1016/j.cej.2013.03.036
3 Feltens R, M?gel I, R?der-Stolinski C, Simon J C, Herberth G, Lehmann I. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicology and Applied Pharmacology, 2010, 242(1): 100–108
https://doi.org/10.1016/j.taap.2009.09.020 pmid: 19800902
4 Wang C, Xi J Y, Hu H Y. Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products. Chemosphere, 2008, 73(8): 1167–1171
https://doi.org/10.1016/j.chemosphere.2008.07.065 pmid: 18774585
5 de Voogt P, Maier E A, Chollot A. Improvements in the determination of chlorobenzenes and chlorophenols through a stepwise interlaboratory study approach. Fresenius' Journal of Analytical Chemistry, 1998, 361(2): 158–163
https://doi.org/10.1007/s002160050854
6 Keith L H, Telliard W A. Priarity pollutants I—A perspective view. Environmental Science & Technology, 1979, 13(4): 416–423
https://doi.org/10.1021/es60152a601
7 Ma J, Zheng J S, Chen Z Y, Wu M H, Horii Y C, Ohura T, Kannan K. Chlorinated polycyclic aromatic hydrocarbons in urban surface dust and soil of Shanghai, China. Advanced Materials Research. Stafa-Zurich: Trans Technology Publications LTD., 2013, 2989–2994
8 Chary N S, Herrera S, Gómez M J, Fernández-Alba A R. Parts per trillion level determination of endocrine-disrupting chlorinated compounds in river water and wastewater effluent by stir-bar-sorptive extraction followed by gas chromatography-triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404(6-7): 1993–2006
https://doi.org/10.1007/s00216-012-6251-9 pmid: 22850896
9 Wang M J, Mcgrath S P, Jones K C. The chlorobenzene content of archived sewage sludges. Science of the Total Environment, 1992, 121: 159–175
https://doi.org/10.1016/0048-9697(92)90313-H
10 Stackelberg P E, Gibs J, Furlong E T, Meyer M T, Zaugg S D, Lippincott R L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment, 2007, 377(2–3): 255–272
https://doi.org/10.1016/j.scitotenv.2007.01.095 pmid: 17363035
11 Lin M, Cui F, Yin X, Zhao Z, Niu C, Wang Y. Analysis of powdered activated carbon adsorption process in coping with sudden pollution of chlorobenzene in raw water. Journal of Civil. Architectural & Environmental Engineering, 2011, 33: 132–136
12 Hansen B R, Davies S R H. Review of potential technologies for the removal of dissolved components from produced water. Chemical Engineering Research & Design, 1994, 72: 176–188
13 Hwang Y L, Keller G E, Olson J D. Steam stripping for removal of organic pollutants from water:1. Stripping effectiveness and stripper design. Industrial & Engineering Chemistry Research, 1992, 31(7): 1753–1759
https://doi.org/10.1021/ie00007a021
14 Ye F X, Shen D S. Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere, 2004, 54(10): 1573–1580
https://doi.org/10.1016/j.chemosphere.2003.08.019 pmid: 14659959
15 van Eekert M H, Schraa G. The potential of anaerobic bacteria to degrade chlorinated compounds. Water Science and Technology, 2001, 44(8): 49–56
pmid: 11730136
16 Zhang X J, Chen C, Lin P F, Hou A X, Niu Z B, Wang J. Emergency drinking water treatment during source water pollution accidents in China: origin analysis, framework and technologies. Environmental Science & Technology, 2011, 45(1): 161–167
https://doi.org/10.1021/es101987e pmid: 21133359
17 Qiang Z, Ben W, Huang C. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform. Frontiers of Environmental Science & Engineering in China, 2008, 2(4): 397–409
https://doi.org/10.1007/s11783-008-0074-0
18 Cheng R, Wang J, Zhang W. Degradation of chlorinated phenols by nanoscale zero-valent iron. Frontiers of Environmental Science & Engineering in China, 2008, 2(1): 103–108
https://doi.org/10.1007/s11783-008-0009-9
19 Blum D, Suffet I H, Duguet J P. Estimating the activated carbon adsorption of organic chemicals in water. Critical Reviews in Environmental Science and Technology, 1993, 23(2): 121–136
https://doi.org/10.1080/10643389309388446
20 Brasquet C, Bourges B, Le Cloirec P. Quantitative structure-property relationship (QSPR) for the adsorption of organic compounds onto activated carbon cloth: comparison between multiple linear regression and neural network. Environmental Science & Technology, 1999, 33(23): 4226–4231
https://doi.org/10.1021/es981358m
21 de Ridder D J, Villacorte L, Verliefde A R D, Verberk J Q J C, Heijman S G J, Amy G L, van Dijk J C. Modeling equilibrium adsorption of organic micropollutants onto activated carbon. Water Research, 2010, 44(10): 3077–3086
https://doi.org/10.1016/j.watres.2010.02.034 pmid: 20236679
22 Sotelo J L, Ovejero G, Delgado J A, Martínez I. Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC. Water Research, 2002, 36(3): 599–608
https://doi.org/10.1016/S0043-1354(01)00261-5 pmid: 11827321
23 Lin M L, Zhao Z W, Cui F Y, Xia S J. Modeling of equilibrium and kinetics of chlorobenzene (CB) adsorption onto powdered activated carbon (PAC) for drinking water treatment. Desalination and Water Treatment, 2012, 44(1–3): 245–254
https://doi.org/10.1080/19443994.2012.691746
24 Nourmoradi H, Nikaeen M, Khiadani M. Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 2012, 191: 341–348
https://doi.org/10.1016/j.cej.2012.03.029
25 Fisal A, Daud W M A W, Ahmad M A, Radzi R. Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: Kinetics and equilibrium studies. Chemical Engineering Journal, 2011, 178(0): 461–467
https://doi.org/10.1016/j.cej.2011.10.044
26 Liu Q, Zheng T, Wang P, Jiang J, Li N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 2010, 157(2–3): 348–356
https://doi.org/10.1016/j.cej.2009.11.013
27 Tullo A. Obscure Chemical Taints Water Supply. Chemical & Engineering News, Washington, 2014, 10–15
28 Lin J, Wang L. Comparison between linear and non-linear forms of pseudo first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China, 2009, 3(3): 320–324
https://doi.org/10.1007/s11783-009-0030-7
29 Chow Q. Predicting adsorption isotherms in natural water using polyparameter linear free energy relationships,University of Illinois at Urbana-Champaign, Urbana, Illinois, 2010
30 Suffet I H, Mcguire M J. Activated Carbon Adsorption of Organics from the Aqueous Phase. Michigan: Ann Arbor Science Publishers, Inc., 1980
31 Blum D, Suffet I H, Duguet J P. Quantitative structure-activity relationship using molecular connectivity for the activated carbon adsorption of organic-chemicals in water. Water Research, 1994, 28(3): 687–699
https://doi.org/10.1016/0043-1354(94)90149-X
32 Hu Y Q, Guo T, Ye X S, Li Q, Guo M, Liu H N, Wu Z J. Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chemical Engineering Journal, 2013, 228: 392–397
https://doi.org/10.1016/j.cej.2013.04.116
33 Hu J Y, Aizawa T, Magara Y. Evaluation of adsorbability of pesticides in water on powdered activated carbon using octanol-water partition coefficient. Water Science and Technology, 1997, 35(7): 219–226
https://doi.org/10.1016/S0273-1223(97)00134-0
34 van Noort P C M. Estimation of amorphous organic carbon/water partition coefficients, subcooled liquid aqueous solubilities, and n-octanol/water partition coefficients of nonpolar chlorinated aromatic compounds from chlorine fragment constants. Chemosphere, 2009, 74(8): 1024–1030
https://doi.org/10.1016/j.chemosphere.2008.11.002 pmid: 19091375
35 Abraham M H, Ibrahim A, Zissimos A M. Determination of sets of solute descriptors from chromatographic measurements. Journal of Chromatography. A, 2004, 1037(1–2): 29–47
https://doi.org/10.1016/j.chroma.2003.12.004 pmid: 15214659
[1] Supplementary Material Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed