Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 105-111    https://doi.org/10.1007/s11783-014-0726-1
RESEARCH ARTICLE
Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids
Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG(),Jun MA()
Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(162 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aggregation of common manganese dioxide (MnO2) colloids has great impact on their surface reactivity and therefore on their fates as well as associated natural and synthetic contaminants in engineered (e.g. water treatment) and natural aquatic environments. Nevertheless, little is known about the aggregation kinetics of MnO2 colloids and the effect of humic acid (HA) and surfactants on these. In this study, the early stage aggregation kinetics of MnO2 nanoparticles in NaNO3 and Ca(NO3)2 solutions in the presence of HA and surfactants (i.e., sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP)) were modeled through time-resolved dynamic light scattering. In the presence of HA, MnO2 colloids were significantly stabilized with a critical coagulation concentration (CCC) of ~300 mmol·L-1 NaNO3 and 4 mmol·L-1 Ca(NO3)2. Electrophoretic mobility (EPM) measurements confirmed that steric hindrance may be primarily responsible for increasing colloidal stability in the presence of HA. Moreover, the molecular and/or chemical properties of HA might impact its stabilizing efficiency. In the case of PVP, only a slight increase of aggregation kinetics was observed, due to steric reactions originating from adsorbed layers of PVP on the MnO2 surface. Consequently, higher CCC values were obtained in the presence of PVP. However, there was a negligible reduction in MnO2 colloidal stability in the presence of 20 mg·L-1SDS.

Keywords humic acid      surfactant      aggregation kinetics      drinking water      manganese dioxide colloids     
Corresponding Author(s): Jin JIANG   
Online First Date: 11 June 2014    Issue Date: 31 December 2014
 Cite this article:   
Xiaoliu HUANGFU,Yaan WANG,Yongze LIU, et al. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 105-111.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0726-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/105
Fig.1  Aggregation attachment efficiencies of MnO2 colloids as a function of a) NaNO3 and b) Ca(NO3)2 concentration in the presence of 2 mg·L-1 TOC CHA. Aggregation experiments were conducted at about pH 6 and 25°C
Fig.2  EPM of MnO2 colloids as a function of a) NaNO3 and b) Ca(NO3)2 concentration in the absence and presence of 2 mg·L-1 CHA, 20 mg·L-1 PVP, 20 mg·L-1 SDS. EPM measurements were conducted at about pH 6 and 25°C
Fig.3  Aggregation attachment efficiencies of MnO2 colloids as a function of a) NaNO3 and b) Ca(NO3)2 concentration in the presence of 20 mg·L-1 PVP. Aggregation experiments were conducted at about pH 6 and 25°C
Fig.4  Aggregation attachment efficiencies of MnO2 colloids as a function of a) NaNO3 and b) Ca(NO3)2 concentration in the presence of 20 mg·L-1 SDS. Aggregation experiments were conducted at about pH 6 and 25°C
1 Ferreira J R, Lawlor A J, Bates J M, Clarke K J, Tipping E. Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system, UK. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 120(1–3): 183–198
https://doi.org/10.1016/S0927-7757(96)03721-1
2 Lienemann C P, Taillefert M, Perret D, Gaillard J F. Association of cobalt and manganese in aquatic systems: Chemical and microscopic evidence. Geochimica et Cosmochimica Acta, 1997, 61(7): 1437–1446
https://doi.org/10.1016/S0016-7037(97)00015-X
3 Herszage J, dos Santos Afonso M, Luther G W. Oxidation of cysteine and glutathione by soluble polymeric MnO2. Environmental Science & Technology, 2003, 37(15): 3332–3338
https://doi.org/10.1021/es0340634 pmid: 12966978
4 Zhang H, Huang C H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environmental Science & Technology, 2003, 37(11): 2421–2430
https://doi.org/10.1021/es026190q pmid: 12831027
5 Andrzejewski P, Nawrocki L, Nawrocki J. The role of manganese dioxide (MnO2) in the process of N-nitrosodimethylamine (NDMA) formation during reaction of dimethylamine (DMA) with some oxidants in water solutions. Ochr Sr, 2009, 31(4): 25–29
6 Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environmental Science & Technology, 2009, 43(21): 8326–8331
https://doi.org/10.1021/es901663d pmid: 19924964
7 Loomer D B, Al T A, Banks V J, Parker B L, Mayer K U. Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4. Environmental Science & Technology, 2010, 44(15): 5934–5939
https://doi.org/10.1021/es100879w pmid: 20617842
8 Al-Thabaiti S A, Al-Nowaiser F M, Obaid A Y, Al-Youbi A O, Khan Z. Formation and decomposition of water soluble colloidal manganese dioxide during the reduction of MnO4- by cysteine. A kinetic study. Journal of Dispersion Science and Technology, 2008, 29(10): 1391–1395
https://doi.org/10.1080/01932690802313188
9 Ma J, Graham N. Controlling the formation of chloroform by permanganate preoxidation- Destruction of precursors. Journal of Water Supply Research and Technology-Aqua, 1996, 45(6): 308–315
10 Lee S M, Kim W G, Yang J K, Tiwari D. Sorption behaviour of manganese-coated calcined-starfish and manganese-coated sand for Mn(II). Environmental Technology, 2010, 31(4): 445–453
https://doi.org/10.1080/09593330903514474 pmid: 20450119
11 Wigginton N S, Haus K L, Hochella M F Jr. Aquatic environmental nanoparticles. Journal of Environmental Monitoring, 2007, 9(12): 1306–1316
https://doi.org/10.1039/b712709j pmid: 18049768
12 Buffle J, Leppard G G. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environmental Science & Technology, 1995, 29(9): 2169–2175
https://doi.org/10.1021/es00009a004 pmid: 22280252
13 Villalobos M, Bargar J, Sposito G. Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environmental Science & Technology, 2005, 39(2): 569–576
https://doi.org/10.1021/es049434a pmid: 15707057
14 Yang K, Lin D, Xing B. Interactions of humic acid with nanosized inorganic oxides. Langmuir, 2009, 25(6): 3571–3576
https://doi.org/10.1021/la803701b pmid: 19708146
15 Yao W S, Millero F J. Adsorption of phosphate on manganese dioxide in seawater. Environmental Science & Technology, 1996, 30(2): 536–541
https://doi.org/10.1021/es950290x
16 Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation of organics. Environmental Science & Technology, 2010, 44(11): 4270–4275
https://doi.org/10.1021/es100038d pmid: 20429549
17 Jiang J, Pang S Y, Ma J, Liu H. Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters. Environmental Science & Technology, 2012, 46(3): 1774–1781
https://doi.org/10.1021/es2035587 pmid: 22208220
18 Wang C Y, Groenzin H, Shultz M J. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. Journal of the American Chemical Society, 2005, 127(27): 9736–9744
https://doi.org/10.1021/ja051996m pmid: 15998078
19 Zhang H Z, Penn R L, Hamers R J, Banfield J F. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. Journal of Physical Chemistry B, 1999, 103(22): 4656–4662
https://doi.org/10.1021/jp984574q
20 Tseng Y H, Lin H Y, Kuo C S, Li Y Y, Huang C P. Thermostability of nano-TiO2 and its photocatalytic activity. Reaction Kinetics and Catalysis Letters, 2006, 89(1): 63–69
https://doi.org/10.1007/s11144-006-0087-2
21 Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 2009, 43(17): 4249–4257
https://doi.org/10.1016/j.watres.2009.06.005 pmid: 19577783
22 Tipping E, Higgins D C. The effect of adsorbed humic substances on the colloid stability of heamatite particles. Colloids and Surfaces, 1982, 5(2): 85–92
https://doi.org/10.1016/0166-6622(82)80064-4
23 Saleh N B, Pfefferle L D, Elimelech M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 2010, 44(7): 2412–2418
https://doi.org/10.1021/es903059t pmid: 20184360
24 Domingos R F, Tufenkji N, Wilkinson K I. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environmental Science & Technology, 2009, 43(5): 1282–1286
https://doi.org/10.1021/es8023594 pmid: 19350891
25 Huangfu X, Jiang J, Ma J, Liu Y, Yang J. Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules. Environmental Science & Technology, 2013, 47(18): 10285–10292
pmid: 23947796
26 Abe T, Kobayashi S, Kobayashi M. Aggregation of colloidal silica particles in the presence of fulvic acid, humic acid, or alginate: Effects of ionic composition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1–3): 21–26
https://doi.org/10.1016/j.colsurfa.2010.11.052
27 Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 2007, 309(1): 126–134
https://doi.org/10.1016/j.jcis.2007.01.074 pmid: 17331529
28 Tejamaya M, R?mer I, Merrifield R C, Lead J R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environmental Science & Technology, 2012, 46(13): 7011–7017
https://doi.org/10.1021/es2038596 pmid: 22432856
29 Bouchard D, Zhang W, Powell T, Rattanaudompol U S. Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environmental Science & Technology, 2012, 46(8): 4458–4465
https://doi.org/10.1021/es204618v pmid: 22443301
30 Ma J, Jiang J, Pang S, Guo J. Adsorptive fractionation of humic acid at air-water interfaces. Environmental Science & Technology, 2007, 41(14): 4959–4964
https://doi.org/10.1021/es070238o pmid: 17711209
31 Holthoff H, Egelhaaf S U, Borkovec M, Schurtenberger P, Sticher H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir, 1996, 12(23): 5541–5549
https://doi.org/10.1021/la960326e
32 Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 2006, 22(26): 10994–11001
https://doi.org/10.1021/la062072v pmid: 17154576
33 Smith B, Wepasnick K, Schrote K E, Bertele A R, Ball W P, O’Melia C, Fairbrother D H. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environmental Science & Technology, 2009, 43(3): 819–825
https://doi.org/10.1021/es802011e pmid: 19245021
34 Li X, Lenhart J J, Walker H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 2010, 26(22): 16690–16698
https://doi.org/10.1021/la101768n pmid: 20879768
35 Liu X, Wazne M, Han Y, Christodoulatos C, Jasinkiewicz K L. Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. Journal of Colloid and Interface Science, 2010, 348(1): 101–107
https://doi.org/10.1016/j.jcis.2010.04.036 pmid: 20483427
36 Brant J, Lecoanet H, Wiesner M R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. Journal of Nanoparticle Research, 2005, 7(4–5): 545–553
https://doi.org/10.1007/s11051-005-4884-8
37 Li X, Lenhart J J, Walker H W. Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir, 2012, 28(2): 1095–1104
https://doi.org/10.1021/la202328n pmid: 22149007
38 Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 2007, 309(1): 126–134
https://doi.org/10.1016/j.jcis.2007.01.074 pmid: 17331529
39 Furman O, Usenko S, Lau B L T. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environmental Science & Technology, 2013, 47(3): 1349–1356
pmid: 23298221
40 Louie S M, Tilton R D, Lowry G V. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environmental Science & Technology, 2013, 47(9): 4245–4254
https://doi.org/10.1021/es400137x pmid: 23550560
41 Huynh K A, Chen K L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science & Technology, 2011, 45(13): 5564–5571
https://doi.org/10.1021/es200157h pmid: 21630686
42 Lin S, Cheng Y, Liu J, Wiesner M R. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir, 2012, 28(9): 4178–4186
https://doi.org/10.1021/la202884f pmid: 22242766
[1] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[2] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[3] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[6] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[7] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[8] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[9] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[10] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[11] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[12] Peipei Chen, Chaoqi Chen, Xiqing Li. Transport of antibiotic resistance plasmids in porous media and the influence of surfactants[J]. Front. Environ. Sci. Eng., 2018, 12(2): 5-.
[13] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[14] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[15] Chunming Wang, Huirong Lin, Chengsong Ye. Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification[J]. Front. Environ. Sci. Eng., 2016, 10(6): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed