Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 37-45    https://doi.org/10.1007/s11783-014-0729-y
RESEARCH ARTICLE
Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue
Chengyuan SU1,2,*(),Weiguang LI1,Xingzhe LIU1,Xiaofei HUANG1,Xiaodan YU1
1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
2. School of Environment and Resources, Guangxi Normal University, Guilin 541004, China
 Download: PDF(913 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A study of the decolorization of reactive brilliant blue in an aqueous solution using Fe-Mn-sepiolite as a heterogeneous Fenton-like catalyst has been performed. The Fourier transform infrared (FTIR) spectra of the catalyst showed bending vibrations of the Fe-O. The X-ray diffraction (XRD) patterns of the catalyst showed characteristic diffraction peaks of α-Fe2O3, γ-Fe2O3 and MnO. A four factor central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables (catalyst addition, hydrogen peroxide dosage, initial pH value and initial dye concentration). When the reaction conditions were catalyst dosage= 0.4 g, [H2O2]= 0.3 mL, pH= 2.5, [reactive brilliant blue]o = 50 mg·L−1, and volume of solution= 500 mL at room temperature, the decolorization efficiency of reactive brilliant blue was 91.98% within 60 min. Moreover, the Fe-Mn-sepiolite catalyst had good stability for the degradation of reactive brilliant blue even after six cycles. Leaching of iron ions (<0.4 mg·L−1) was observed. The decoloring process was reactive brilliant blue specific via a redox reaction. The benzene ring and naphthalene ring were first oxidized to open ring; these were then oxidized to the alcohol and carboxylic acid. The reactive brilliant blue was decomposed mainly by the attack of ·OH radicals including surface-bound ·OH radicals generated on the catalyst surface.

Keywords Fe-Mn-sepiolite catalyst      heterogeneous Fenton-like      reactive brilliant blue      homogeneous precipitation method      hydroxyl radical     
Corresponding Author(s): Chengyuan SU   
Online First Date: 11 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Weiguang LI,Xingzhe LIU,Xiaofei HUANG, et al. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue[J]. Front. Environ. Sci. Eng., 2016, 10(1): 37-45.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0729-y
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/37
Fig.1  Structural diagram of reactive brilliant blue
independent variable factor range and levels
−2 −1 0 1 2
catalyst dosage X1 0.1 0.2 0.3 0.4 0.5
hydrogen peroxide dosage X2 0.1 0.2 0.3 0.4 0.5
initial pH X3 2 3 4 5 6
initial dye concentration X4 20 40 60 80 100
Tab.1  Experimental range and levels of independent variables
Fig.2  XRD diffraction patterns of raw sepiolite (a) and the Fe-Mn-sepiolite catalyst (b)
Fig.3  FTIR spectra of raw sepiolite (a) and the Fe-Mn-sepiolite catalyst (b)
source sum of squares mean square F-value p-value, prob>F
model 4507.69 4507.69 6.10 0.0006
X1 1046.76 1046.76 19.82 0.0005
X2 177.76 177.76 3.36 0.0866
X3 1773.32 1773.32 33.57 0.0001
X4 30.60 30.60 0.58 0.4584
X1X2 49.35 49.35 0.93 0.3491
X1X3 48.65 48.65 0.92 0.3524
X1X4 41.28 41.28 0.78 0.3906
X2X3 34.52 34.52 0.65 0.4315
X2X4 4.73 4.73 0.09 0.7688
X3X4 108.68 108.68 2.06 0.1720
X 1 2 348.31 348.31 6.59 0.0214
X 2 2 983.66 983.66 18.62 0.0006
X 3 2 21.05 21.05 0.40 0.5374
X 4 2 31.03 31.03 0.59 0.4553
Tab.2  ANOVA for response surface quadratic model analysis of variance
Fig.4  The 3D response surface plot of the decolorization efficiency of reactive brilliant blue as a function of (a) catalyst dosage with hydrogen peroxide dosage; (b) hydrogen peroxide dosage with initial dye concentration; (c) catalyst dosage with initial pH; (d) hydrogen peroxide dosage with initial pH. Reaction conditions: volume of solution is 500 mL and room temperature
Fig.5  Catalyst stability. Reaction conditions: initial concentration of reactive brilliant blue, [reactive brilliant blue]o = 50 mg·L−1,volume of solution= 500 mL, hydrogen peroxide dosage= 0.3 mL, catalyst dosage= 0.4 g, initial solution pH and room temperature
Fig.6  Absorbance spectra. Reaction conditions: initial concentration of reactive brilliant blue, [reactive brilliant blue]o = 50 mg·L−1, volume of solution= 500 mL, hydrogen peroxide dosage= 0.3 mL, catalyst dosage= 0.4 g, initial solution pH and room temperature
Fig.7  FTIR spectra of reactive brilliant blue before (a) and after treatment (b)
Fig.8  Effect of various experimental parameters on the decolorization of reactive brilliant blue
Fig.9  Effects of isopropanol (a) and KI (b) on the decolorization of reactive brilliant blue
1 Ruan  X C, Liu  M Y, Zeng  Q F, Ding  Y H. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis. Separation and Purification Technology, 2010, 74(2): 195–201
https://doi.org/10.1016/j.seppur.2010.06.005
2 Zhou  T, Lu  X, Wang  J, Wong  F S, Li  Y. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. Journal of Hazardous Materials, 2009, 165(1–3): 193–199
https://doi.org/10.1016/j.jhazmat.2008.09.100 pmid: 18992989
3 Wang  W, Zhou  M H, Mao  Q, Yue  J J, Wang  X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst.  Catalysis  Communications,  2010,  11(11):  937–941
https://doi.org/10.1016/j.catcom.2010.04.004
4 Hai  F I, Yamamoto  K, Nakajima  F, Fukushi  K. Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Research, 2011, 45(6): 2199–2206
https://doi.org/10.1016/j.watres.2011.01.013 pmid: 21310458
5 Tabak  A, Eren  E, Afsin  B, Caglar  B. Determination of adsorptive properties of a Turkish Sepiolite for removal of Reactive Blue 15 anionic dye from aqueous solutions. Journal of Hazardous Materials, 2009, 161(2–3): 1087–1094
https://doi.org/10.1016/j.jhazmat.2008.04.062 pmid: 18534746
6 Gonzalez  R O, Holzer  F F D. Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Applied Catalysis A, 2011, 398(1–2): 44–53
https://doi.org/10.1016/j.apcata.2011.03.005
7 Masomboon  N, Ratanatamskul  C, Lu  M C. Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes. Journal of Hazardous Materials, 2011, 192(1): 347–353
pmid: 21645969
8 Gulkaya  I, Surucu  G A, Dilek  F B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 2006, 136(3): 763–769
https://doi.org/10.1016/j.jhazmat.2006.01.006 pmid: 16480816
9 Santos  M S F, Alves  A, Madeira  L M. Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 2011, 175(15):  279–290
https://doi.org/10.1016/j.cej.2011.09.106
10 Chen  L, Ma  J, Li  X, Zhang  J, Fang  J, Guan  Y, Xie  P. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environmental Science & Technology, 2011, 45(9): 3925–3930
https://doi.org/10.1021/es2002748 pmid: 21469678
11 Xu  L, Wang  J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 2011, 186(1): 256–264
https://doi.org/10.1016/j.jhazmat.2010.10.116 pmid: 21109349
12 Ballesteros Martín  M M, Sánchez Pérez  J A, García Sánchez  J L, Casas López  J L, Malato Rodríguez  S. Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research, 2009, 43(15): 3838–3848
https://doi.org/10.1016/j.watres.2009.05.021 pmid: 19560181
13 Panizza  M, Cerisola  G. Electro-Fenton degradation of synthetic dyes. Water Research, 2009, 43(2): 339–344
https://doi.org/10.1016/j.watres.2008.10.028 pmid: 18996554
14 Feng  C H, Li  F B, Mai  H J, Li  X Z. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environmental Science & Technology, 2010, 44(5): 1875–1880
https://doi.org/10.1021/es9032925 pmid: 20108963
15 Bayat  M, Sohrabi  M, Royaee  S J. Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite. Journal of Industrial and Engineering Chemistry, 2012, 18(3): 957–962
https://doi.org/10.1016/j.jiec.2011.09.004
16 Hassan  H, Hameed  B H. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal, 2011, 171(3): 912–918
https://doi.org/10.1016/j.cej.2011.04.040
17 Hassan  H, Hameed  B H. Oxidative decolorization of Acid Red 1 solutions by Fe–zeolite Y type catalyst. Desalination, 2011, 276(1–3): 45–52
https://doi.org/10.1016/j.desal.2011.03.018
18 Han  Z, Dong  Y, Dong  S. Copper-iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation. Journal of Hazardous Materials, 2011, 189(1–2): 241–248
https://doi.org/10.1016/j.jhazmat.2011.02.026 pmid: 21377784
19 Fan  B B, Li  H Y, Fan  W B, Jin  C, Li  R F. Oxidation of cyclohexane over iron and copper salen complexes simultaneously encapsulated in zeolite Y. Applied Catalysis A, 2008, 340(1): 67–75
https://doi.org/10.1016/j.apcata.2008.01.032
20 Guimaraes  I R, Giroto  A, Oliveira  L C A, Guerreiro  M C, Lima  D Q, Fabris  J D. Synthesis and thermal treatment of cu-doped goethite: oxidation of quinoline through heterogeneous Fenton process. Applied Catalysis B: Environmental, 2009, 91(3–4): 581–586
https://doi.org/10.1016/j.apcatb.2009.06.030
21 Se  N, Alvaro  M, Garcia  H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 2010, 99(1–2): 1–26
https://doi.org/10.1016/j.apcatb.2010.07.006
22 Ramírez  G E G, Theng  G B K, Mora  M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Applied Clay Science, 2010, 47(3–4): 182–192
https://doi.org/10.1016/j.clay.2009.11.044
23 Sabah  E, Majdan  M. Removal of phosphorus from vegetable oil by acid-activated sepiolite. Journal of Food Engineering, 2009, 91(3): 423–427
https://doi.org/10.1016/j.jfoodeng.2008.09.020
24 Eren  E, Cubuk  O, Ciftci  H, Eren  B, Caglar  B. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination, 2010, 252(1–3): 88–96
https://doi.org/10.1016/j.desal.2009.10.020
25 Bingol  D, Tekin  N, Alkan  M. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Applied Clay Science, 2010, 50(3): 315–321
https://doi.org/10.1016/j.clay.2010.08.015
26 Demirbas  E, Nas  M Z. Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination, 2009, 243(1–3): 8–21
https://doi.org/10.1016/j.desal.2008.04.011
27 Sun  S P, Lemley  A T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A, 2011, 349(1–2): 71–79
https://doi.org/10.1016/j.molcata.2011.08.022
28 Karla  C G, Omar  T L, Azucena  M G L, Enric  B, Aracely  H R, Juan  M. Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 2012, 286(2): 63–68
https://doi.org/10.1016/j.desal.2011.11.005
29 Zhang  G, Gao  Y, Zhang  Y, Guo  Y. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environmental Science & Technology, 2010, 44(16): 6384–6389
https://doi.org/10.1021/es1011093 pmid: 20704239
30 Ayodele  O B. Effect of phosphoric acid treatment on kaolinite supported ferrioxalate catalyst for the degradation of amoxicillin in batch photo-Fenton process. Applied Clay Science, 2013, 72(2): 74–83
https://doi.org/10.1016/j.clay.2013.01.004
31 Bai  C P, Gong  W Q, Feng  D X, Xian  M, Zhou  Q, Chen  S H, Ge  Z X, Zhou  Y S. Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B. Chemical Engineering Journal, 2012, 197(7): 306–313
https://doi.org/10.1016/j.cej.2012.04.108
32 Frost  R L, Locos  O B, Ruan  H, Kloprogge  J T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 2001, 27(1): 1–13
https://doi.org/10.1016/S0924-2031(01)00110-2
33 Zhang  Z, Zheng  H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials, 2009, 172(2–3): 1388–1393
https://doi.org/10.1016/j.jhazmat.2009.07.146 pmid: 19717231
34 Zhang  A, Wang  N, Zhou  J, Jiang  P, Liu  G. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. Journal of Hazardous Materials, 2012, 201–202(1): 68–73
https://doi.org/10.1016/j.jhazmat.2011.11.033 pmid: 22169244
35 Tian  S H, Tu  Y T, Chen  D S, Chen  X, Xiong  Y. Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chemical Engineering Journal, 2011, 169(1–3): 31–37
https://doi.org/10.1016/j.cej.2011.02.045
36 Xu  L, Wang  J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology, 2012, 46(18): 10145–10153
pmid: 22924545
37 Wang  C, Zhu  L, Wei  M, Chen  P, Shan  G. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research, 2012, 46(3): 845–853
https://doi.org/10.1016/j.watres.2011.11.057 pmid: 22176744
38 Gao  Y Y, Gan  H H, Zhang  G K, Guo  Y D. Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron sepiolite catalyst. Chemical Engineering Journal, 2013, 217(2): 221–230
https://doi.org/10.1016/j.cej.2012.11.115
[1] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[2] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[3] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[4] Jie Mao, Xie Quan, Jing Wang, Cong Gao, Shuo Chen, Hongtao Yu, Yaobin Zhang. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2018, 12(6): 10-.
[5] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[6] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[7] Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN. Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH· generation[J]. Front. Environ. Sci. Eng., 2015, 9(4): 591-595.
[8] ZHAN Manjun, YANG Xi, KONG Lingren, YANG Hongshen. Effect of natural aquatic humic substances on the photodegradation of bisphenol A[J]. Front.Environ.Sci.Eng., 2007, 1(3): 311-315.
[9] PI Yunzheng, WANG Jianlong. Pathway of the ozonation of 2,4,6-trichlorophenol in aqueous solution[J]. Front.Environ.Sci.Eng., 2007, 1(2): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed