Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 185-191    https://doi.org/10.1007/s11783-014-0730-5
RESEARCH ARTICLE
Nitrogen recovery from wastewater using microbial fuel cells
Yong XIAO1,Yue ZHENG1,2,Song WU1,2,Zhao-Hui YANG2,Feng ZHAO1,*()
1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
 Download: PDF(1056 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen is one of major contaminants in wastewater; however, nitrogen, as bio-elements for crop growth, is the indispensable fertilizer in agriculture. In this study, two-chamber microbial fuel cells (MFCs) were first operated with microorganisms in anode chamber and potassium ferricyanide as catholyte. After being successfully startup, the two-chamber MFCs were re-constructed to three-chamber MFCs which were used to recover the NO3N and NH4+N of synthetic wastewater into value-added nitrogenous fertilizer from cathode chamber and anode chamber, respectively. Ferric nitrate was used as the sole electron acceptor in cathode, which also was used to evaluate the NO3N recover efficiency in the case major anion of NO3 in cathode. The output voltage of these MFCs was about 600–700 mV at an external load of 500 Ω. About 47% NH4+N in anode chamber and 83% NO3N in cathode chamber could be recovered. Higher current density can selectively improve the recovery efficiency of both NH4+N and NO3N. The study demonstrated a nitrogen recovery process from synthetic wastewater using three-chamber MFCs.

Keywords nitrogen recovery      microbial fuel cells (MFCs)      electromigration      wastewater treatment     
Corresponding Author(s): Feng ZHAO   
Online First Date: 11 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Feng ZHAO,Yong XIAO,Yue ZHENG, et al. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0730-5
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/185
Fig.1  Schematic diagram of three-chamber MFC used for nitrogen recovery
Fig.2  Output voltage of the three-chamber MFCs for nitrogen recovery
Fig.3   N H 4 + N concentration in the inflow and outflow of the anode chambers, N H 4 + N concentration in the middle recovery chambers and N H 4 + N concentration transported to the cathode chamber in MFC1 (a), MFC2 (b) and MFC3 (c), respectively. The error bar is for n = 3 repeated measurements. d: Distribution of N H 4 + N from the anode inflow within three cycles of each MFC
Fig.4  Mol ratio of N H 4 + to cations in the anode inflow and cations electromigrated from the anode chamber to the middle recovery chamber. The error bar is for n = 3 repeated cycles
Fig.5   N O 3 N concentration in the inflow and outflow of the cathode chambers, and actual and theoretical N O 3 N concentration in the outflow of the middle recovery chambers in MFC1 (a), MFC2 (b) and MFC3 (c), respectively. The error bar is for n = 3 repeated tests. (d): Distribution of N O 3 N from the anode inflow within three cycles
1 Heffer  P. Prud'Homme  M. Fertilizer Outlook 2012–2016. International Fertilizer Industry Association (IFA), 2012
2 Tchobanoglous  G, Burton  F L, Stensel  H D. Solution Manual for Use With Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill, 2003
3 Ghafari  S, Hasan  M, Aroua  M K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresource Technology, 2008, 99(10): 3965–3974
https://doi.org/10.1016/j.biortech.2007.05.026 pmid: 17600700
4 Kim  J H, Chen  M, Kishida  N, Sudo  R. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Research, 2004, 38(14–15): 3340–3348
https://doi.org/10.1016/j.watres.2004.05.006 pmid: 15276751
5 van Dongen  U, Jetten  M S, van Loosdrecht  M C. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Science and Technology, 2001, 44(1): 153–160
pmid: 11496667
6 Hellinga  C, Schellen  A, Mulder  J, Van Loosdrecht  M, Heijnen  J. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37(9): 135–142
https://doi.org/10.1016/S0273-1223(98)00281-9
7 Zhao  F, Rahunen  N, Varcoe  J R, Chandra  A, Avignone-Rossa  C, Thumser  A E, Slade  R C T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology, 2008, 42(13): 4971–4976
https://doi.org/10.1021/es8003766 pmid: 18678035
8 Logan  B E, Hamelers  B, Rozendal  R, Schröder  U, Keller  J, Freguia  S, Aelterman  P, Verstraete  W, Rabaey  K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192
https://doi.org/10.1021/es0605016 pmid: 16999087
9 Virdis  B, Rabaey  K, Yuan  Z, Keller  J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42(12): 3013–3024
https://doi.org/10.1016/j.watres.2008.03.017 pmid: 18466949
10 Lovley  D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews. Microbiology, 2006, 4(7): 497–508
https://doi.org/10.1038/nrmicro1442 pmid: 16778836
11 Cao  X, Huang  X, Liang  P, Xiao  K, Zhou  Y, Zhang  X, Logan  B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 2009, 43(18): 7148–7152
https://doi.org/10.1021/es901950j pmid: 19806756
12 Liu  H, Logan  B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004, 38(14): 4040–4046
https://doi.org/10.1021/es0499344 pmid: 15298217
13 Liu  H, Ramnarayanan  R, Logan  B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 2004, 38(7): 2281–2285
https://doi.org/10.1021/es034923g pmid: 15112835
14 Logan  B E. Extracting hydrogen and electricity from renewable resources. Environmental Science & Technology, 2004, 38(9): 160A–167A
https://doi.org/10.1021/es040468s pmid: 15180042
15 Min  B, Logan  B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology, 2004, 38(21): 5809–5814
https://doi.org/10.1021/es0491026 pmid: 15575304
16 He  Z, Minteer  S D, Angenent  L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 2005, 39(14): 5262–5267
https://doi.org/10.1021/es0502876 pmid: 16082955
17 Liu  H, Cheng  S, Logan  B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658–662
https://doi.org/10.1021/es048927c pmid: 15707069
18 Kuntke  P, Śmiech  K M, Bruning  H, Zeeman  G, Saakes  M, Sleutels  T H J A, Hamelers  H V M, Buisman  C J N. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 2012, 46(8): 2627–2636
https://doi.org/10.1016/j.watres.2012.02.025 pmid: 22406284
19 Rabaey  K, Bützer  S, Brown  S, Keller  J, Rozendal  R A. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 2010, 44(11): 4315–4321
https://doi.org/10.1021/es9037963 pmid: 20446659
20 Xiao  Y, Wu  S, Zhang  F, Wu  Y C, Yang  Z H, Zhao  F. Promoting electrogenic ability of microbes with negative pressure. Journal of Power Sources, 2013, 229(1): 79–83
https://doi.org/10.1016/j.jpowsour.2012.11.139
21 He  Z, Kan  J, Wang  Y, Huang  Y, Mansfeld  F, Nealson  K H. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science & Technology, 2009, 43(9): 3391–3397
https://doi.org/10.1021/es803492c pmid: 19534163
22 Desloover  J, Woldeyohannis  A A, Verstraete  W, Boon  N, Rabaey  K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environmental Science & Technology, 2012, 46(21): 12209–12216
https://doi.org/10.1021/es3028154 pmid: 23050591
[1] 10.1007/s11783-014-0730-5 Download
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[14] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed