Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 201-210    https://doi.org/10.1007/s11783-014-0739-9
RESEARCH ARTICLE
Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge
Yiying JIN,Yangyang LI(),Fuqiang LIU
School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(1104 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influences of dewatered sludge blending ratio in coal on flammability index (C) and combustion characteristic index (S) and release of sulfur dioxide (SO2), nitrogen oxide (NOx), carbon monoxide (CO) and heavy metals (Hg, As, Cd, Pb and Cr) were studied. The impact on combustion characteristics could be ignored if less than 20% of dewatered sludge was added in coal. Besides, emission pattern experiments of NOx, SO2, CO and heavy metals were carried out in a high-temperature tubular furnace. Results showed that the conversion rate of NOx and total emission of SO2 reduced with the increase of sludge adding ratio, and a better effect of fixing sulfur could be obtained when the blending ratio reached 30%. Concentrations and distributions of five types of heavy metals in different residues (bottom ash and fly ash) as well as in flue gas were analyzed. It was shown that the characteristics of coal and sludge, as well as the volatilization of heavy metals had a great influence on the distribution of heavy metals.

Keywords sewage sludge      combustion characteristic      coal      emission      heavy metals     
Corresponding Author(s): Yangyang LI   
Online First Date: 13 October 2014    Issue Date: 03 December 2015
 Cite this article:   
Yiying JIN,Yangyang LI,Fuqiang LIU. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Front. Environ. Sci. Eng., 2016, 10(1): 201-210.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0739-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/201
sample moisture content/% volatiles/% ashes/% C/% H/% N/% S/% O/% HHVa)/(J·g−1)
coal 9 59.3 7.2 52 3 1 1 18 30000
sludge 85 93.2 6.6 28 4 4 2 25 9320
Tab.1  Characteristics of the sludge and the coal
sample Hg/(mg·kg−1) Pb/( mg·kg−1) Cd/( mg·kg−1) Cr/( mg·kg−1) As/( mg·kg−1)
coal 0.016 9.62 0.042 5.6 2.28
sludge 3.16 28.46 1.35 76.51 6.52
Tab.2  Content of heavy metals in the sludge and the coal
Fig.1  Horizontal tube furnace experimental system. 1-O2 steel cylinder, 2- N2 steel cylinder, 3-flow meter, 4-gas mixer, 5-silica drier, 6-tube furnace, 7- ceramic boat, 8-flowmeter, 9-gas analyzer, 10-computer
Fig.2  Combustion parameters of coal with different blended ratios of dewatered sludge
Fig.3  Release of CO (a1), SO2 (b1) and NOx (c1) and conversion of fuel-C to CO (a2), fuel-S to SO2 (b2) and fuel-N to NOx (c2) during coal combustion with different dewatered sludge ratios
Fig.4  Release amount of Hg (a), Pb (b), Cd (c), Cr(d), As(e) during co-combustion process with different sludge ratios
Fig.5  Distribution of Hg (a), Pb (b), Cd (c), Cr(d), As(e) in fly ash, bottom char and flue gas
1 de Souza Pereira  M, Kuch  B. Heavy metals, PCDD/F and PCB in sewage  sludge  samples  from  two  wastewater treatment  facilities in  Rio  de  Janeiro  State,  Brazil.  Chemosphere,  2005,  60(7):  844–853
https://doi.org/10.1016/j.chemosphere.2005.01.079 pmid: 15992591
2 Dewil  R, Baeyens  J, Neyens  E. Reducing the heavy metal content of sewage sludge by advanced sludge treatment methods. Environmental Engineering Science, 2006, 23(6): 994–999
https://doi.org/10.1089/ees.2006.23.994
3 Niu  S L, Han  K H, Lu  C M. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds. Chemical Engineering Journal, 2011, 168(1): 255–261
https://doi.org/10.1016/j.cej.2010.10.082
4 Takahiro  M, Yoshizo  S, Hidekazu  N, Takafumi  Y, Takami  K, Hitoshi  H, Seiichiro  O. Combustion characteristics of sewage sludge in a combustion plant for energy recovery. Fuel Processing Technology, 2009, 90(6): 778–783
https://doi.org/10.1016/j.fuproc.2009.03.003
5 Cartmell  E, Gostelow  P, Riddell-Black  D, Simms  N, Oakey  J, Morris  J, Jeffrey  P, Howsam  P, Pollard  S J. Biosolids—a fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis. Environmental Science & Technology, 2006, 40(3): 649–658
https://doi.org/10.1021/es052181g pmid: 16509299
6 Werther  J, Ogada  T. Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25(1): 55–116
https://doi.org/10.1016/S0360-1285(98)00020-3
7 Yao  H, Naruse  I. Combustion characteristics of dried sewage sludge and control of trace-metal emission. Energy & Fuels, 2005, 19(6): 2298–2303
https://doi.org/10.1021/ef0501039
8 Folgueras  M B, Dı’az  R M, Xiberta  J, Prieto  I. Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel, 2003, 82(15–17): 2051–2055
https://doi.org/10.1016/S0016-2361(03)00161-3
9 Otero  M, Calvo  L F, Gil  M V, García  A I, Morán  A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2008, 99(14): 6311–6319
https://doi.org/10.1016/j.biortech.2007.12.011 pmid: 18255288
10 Park  S W, Jang  C H. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants. Waste Management (New York, N.Y.), 2011, 31(3): 523–529
https://doi.org/10.1016/j.wasman.2010.10.009 pmid: 21051215
11 Barbosa  R, Lapa  N, Boavida  D. Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes. Journal of Hazardous Materials, 2009, 170(2–3): 902–909
12 Li  P S, Hu  Y, Yu  W, Yue  Y N, Xu  Q, Hu  S, Hu  N S, Yang  J. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy. Journal of Hazardous Materials, 2009, 167(1–3):1126–1132
13 Leckner  B, Amand  L E, Lucke  K, Werther  J. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel, 2004, 83(4–5): 477–486
https://doi.org/10.1016/j.fuel.2003.08.006
14 Nadziakiewicz  J, Koziol  M. Co-combustion of sludge with coal. Applied Energy, 2003, 75(3–4): 239–248
https://doi.org/10.1016/S0306-2619(03)00037-0
15 Li  X G, Ma  B G, Xu  L, Hu  Z W, Wang  X G. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochimica Acta, 2006, 441(1): 79–83
https://doi.org/10.1016/j.tca.2005.11.044
16 Ma  B G, Li  X G, Xu  L, Wang  X G, Wang  X G. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochimica Acta, 2006, 445(1): 19–22
https://doi.org/10.1016/j.tca.2006.03.021
17 Essenhigh  R H, Misra  M K, Shaw  D W. Ignition of coal particles: A review. Combustion and Flame, 1989, 77(1): 3–30
https://doi.org/10.1016/0010-2180(89)90101-6
18 Cheng  J Y, Sun  X X. Determination of the Devolatilization Index and Combustion Characteristic Index of Pulverized Coals. Power Engineering, 1987, 5: 13–18
19 Otero  M, Diez  C, Calvo  L F, Garcia  A I, Moran  A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass and Bioenergy, 2002, 22(4): 319–329
https://doi.org/10.1016/S0961-9534(02)00012-0
20 Gu  L F, Chen  X P, Zhao  C S, Wu  X. A study of the characteristics of mixed burning of municipal sewage sludge and coal by a thermogravimetric method. Journal of Engineering for Thermal Energy and Power, 2003, 18(6): 561–563
21 Kester  C L, Rye  R O, Johnson  C A, Schwartz  C, Holmes  C. On-line sulfur isotope analysis of organic material by direct combustion: preliminary results and potential applications. Isotopes in Environmental and Health Studies, 2001, 37(1): 53–65
https://doi.org/10.1080/10256010108033281 pmid: 11558656
22 Spliethoff  H, Hein  K R G. Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Processing Technology, 1998, 54(1–3): 189–205
https://doi.org/10.1016/S0378-3820(97)00069-6
23 Tian  F J, Li  H B, Wu  C Z, Chen  Y, Zhao  Z B, Li  B Q. Fundamental studies on co-briquette of pulverized coal and sludge II. Gaseous pollutants emissions of coal-sewage sludge briquette during isothermal combustion. Journal of Fuel Chemistry and Technology, 2000, 28(5): 454–458
24 Wirsum  M. Experimental investigation and theoretical description of the combustion of sewage sludge in a bubbling fluidized bed combustor. University of Siegen, Germany, 1997
25 Johnsson Jan  E. Formation and reduction of nitrogen oxides in fluidized bed combustion. Fuel, 1994, 73: 398–1415
26 Åmand  L E, Leckner  B. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed. Fuel, 2004, 83(13): 1803–1821
https://doi.org/10.1016/j.fuel.2004.01.014
27 Helena Lopes  M, Abelha  P, Lapa  N, Oliveira  J S, Cabrita  I, Gulyurtlu  I. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed. Waste Management (New York, N.Y.), 2003, 23(9): 859–870
https://doi.org/10.1016/S0956-053X(03)00025-4 pmid: 14583249
28 Otero  M, Gomez  X, Garcia  A I, Moran  A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. Journal of Analytical and Applied Pyrolysis, 2008, 93: 619–626
29 Dewil  R, Baeyens  J, Appels  L. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. Journal of Hazardous Materials, 2007, 144(3): 703–707
https://doi.org/10.1016/j.jhazmat.2007.01.100 pmid: 17321678
30 van de Velden  M, Dewil  R, Baeyens  J, Josson  L, Lanssens  P. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). Journal of Hazardous Materials, 2008, 151(1): 96–102
https://doi.org/10.1016/j.jhazmat.2007.05.056 pmid: 17601665
[1] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[2] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[3] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[4] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[5] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[6] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[7] Jiandong Lu, Shijie You, Xiuheng Wang. Forward osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis concentrate and CaCO3 recovery: A case study on the coal chemical industry[J]. Front. Environ. Sci. Eng., 2021, 15(1): 9-.
[8] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[9] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[10] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[11] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[12] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[13] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[14] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[15] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed