Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 861-866    https://doi.org/10.1007/s11783-014-0742-1
RESEARCH ARTICLE
Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials
Jiafang XIE,Yuxi HUANG,Hanqing YU()
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(853 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotential. Here we report that tunable catalytic selectivity for hydrocarbon formation could be achieved on Cu nanomaterials with different morphologies. By tuning the electrochemical parameters, either Cu oxide nanowires or nanoneedles were fabricated and then electrochemically reduced to the corresponding Cu nanomaterials. The Cu nanowires preferred the formation of C2H4, while the Cu nanoneedles favored the production of more CH4, rather than C2H4. Our work provides a facile synthetic strategy for preparing Cu-based nanomaterials to achieve selective CO2 reduction.

Keywords electrochemical CO2 reduction, Cu oxide, nanostructure, selectivity      hydrocarbon formation     
Corresponding Author(s): Hanqing YU   
Issue Date: 08 October 2015
 Cite this article:   
Jiafang XIE,Yuxi HUANG,Hanqing YU. Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials[J]. Front. Environ. Sci. Eng., 2015, 9(5): 861-866.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0742-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/861
Fig.1  SEM images (a, d), XPS spectra (b, e), and AES spectra (c, f) of the Cu oxide nanomaterials. (a), (b), (c) belonged to Cu oxide NWs, and (d), (e), (f) belonged to Cu oxide NNs
Fig.2  Comparison of the CO2 reduction activities on Cu NWs and NNs in the solution of 0.1 mol·L−1 KHCO3 at 10°C. (a) FEs for CH4 and C2H4, (b) FEs for H2 and HCOOH, (c) total current density, and (d) LSV of the two electrodes after catalysis from+ 0.5 V to −1.3 V with a scan rate of 2 mV·s−1
Fig.3  The FE ratios of CH4 and C2H4 in total hydrocarbons on Cu NWs (a) and Cu NNs (b)
1 Ballantyne  A P, Alden  C B, Miller  J B, Tans  P P, White  J W. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 2012, 488(7409): 70–72
https://doi.org/10.1038/nature11299 pmid: 22859203
2 Parkinson  B A, Weaver  P F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature, 1984, 309(5964): 148–149
https://doi.org/10.1038/309148a0
3 Behrens  M, Studt  F, Kasatkin  I, Kühl  S, Hävecker  M, Abild-Pedersen  F, Zander  S, Girgsdies  F, Kurr  P, Kniep  B L, Tovar  M, Fischer  R W, Nørskov  J K, Schlögl  R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083): 893–897
https://doi.org/10.1126/science.1219831 pmid: 22517324
4 Chen  Z, Deng  S, Wei  H, Wang  B, Huang  J, Yu  G. Activated carbons and amine-modified materials for carbon dioxide capture — a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340
https://doi.org/10.1007/s11783-013-0510-7
5 Oloman  C, Li  H. Electrochemical processing of carbon dioxide. ChemSusChem, 2008, 1(5): 385–391
https://doi.org/10.1002/cssc.200800015 pmid: 18702129
6 Kondratenko  E V, Mul  G, Baltrusaitis  J, Larrazabal  G O, Perez-Ramirez  J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013, 6(11): 3112–3135
https://doi.org/10.1039/c3ee41272e
7 Kumar  B, Asadi  M, Pisasale  D, Sinha-Ray  S, Rosen  B A, Haasch  R, Abiade  J, Yarin  A L, Salehi-Khojin  A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nature Communications, 2013, 4: 2819–2826
https://doi.org/10.1038/ncomms3819 pmid: 24292103
8 Studt  F, Sharafutdinov  I, Abild-Pedersen  F, Elkjær  C F, Hummelshøj  J S, Dahl  S, Chorkendorff  I, Nørskov  J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 2014, 6(4): 320–324
https://doi.org/10.1038/nchem.1873 pmid: 24651199
9 Lu  Q, Rosen  J, Zhou  Y, Hutchings  G S, Kimmel  Y C, Chen  J G, Jiao  F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5:  3242–3247
https://doi.org/10.1038/ncomms4242 pmid: 24476921
10 Azuma  M, Hashimoto  K, Hiramoto  M, Watanabe  M, Sakata  T. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. Journal of the Electrochemical Society, 1990, 137(6): 1772–1778
https://doi.org/10.1149/1.2086796
11 Hori  Y. Electrochemical CO2 reduction on metal electrodes. In: Vayenas  C, White  R, Gamboa-Aldeco  M, eds. Modern Aspects of Electrochemistry. New York: Springer, 2008, 89–189
12 Wasmus  S, Cattaneo  E, Vielstich  W. Reduction of carbon dioxide to methane and ethene — An on-line MS study with rotating electrodes. Electrochimica Acta, 1990, 35(4): 771–775
https://doi.org/10.1016/0013-4686(90)90014-Q
13 Jermann  B, Augustynski  J. Long-term activation of the copper cathode in the course of CO2 reduction. Electrochimica Acta, 1994, 39(11−12): 1891–1896
https://doi.org/10.1016/0013-4686(94)85181-6
14 Hori  Y, Takahashi  I, Koga  O, Hoshi  N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. Journal of Physical Chemistry B, 2002, 106(1): 15–17
https://doi.org/10.1021/jp013478d
15 Hori  Y, Takahashi  I, Koga  O, Hoshi  N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A Chemical, 2003, 199(1−2): 39–47
https://doi.org/10.1016/S1381-1169(03)00016-5
16 Schouten  K J P, Kwon  Y, van der Ham  C J M, Qin  Z, Koper  M T M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science, 2011, 2(10): 1902–1909
https://doi.org/10.1039/c1sc00277e
17 Durand  W J, Peterson  A A, Studt  F, Abild-Pedersen  F, Nørskov  J K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface Science, 2011, 605(15−16): 1354–1359
https://doi.org/10.1016/j.susc.2011.04.028
18 Schouten  K J P, Pérez Gallent  E, Koper  M T M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catalysis, 2013, 3(6): 1292–1295
https://doi.org/10.1021/cs4002404
19 Reske  R, Duca  M, Oezaslan  M, Schouten  K J, Koper  M T, Strasser  P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. Journal of Physical Chemistry Letters, 2013, 4(15): 2410–2413
https://doi.org/10.1021/jz401087q
20 Tang  W, Peterson  A A, Varela  A S, Jovanov  Z P, Bech  L, Durand  W J, Dahl  S, Nørskov  J K, Chorkendorff  I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 2012, 14(1): 76–81
https://doi.org/10.1039/c1cp22700a pmid: 22071504
21 Watanabe  M, Shibata  M, Kato  A, Azuma  M, Sakata  T. Design of alloy electrocatalysts for CO2 reduction 3: the selectivity and reversible reduction of CO2 on Cu alloy electrodes. Journal of the Electrochemical Society, 1991, 128(11): 3382–3389
https://doi.org/10.1149/1.2085417
22 Kauffman  D R, Ohodnicki  P R, Kail  B W, Matranga  C. Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles. Journal of Physical Chemistry Letters, 2011, 2(16): 2038–2043
https://doi.org/10.1021/jz200850y
23 Li  C W, Kanan  M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 2012, 134(17): 7231–7234
https://doi.org/10.1021/ja3010978 pmid: 22506621
24 Gonçalves  M R, Gomes  A, Condeço  J, Fernandes  T R C, Pardal  T, Sequeira  C A C, Branco  J B. Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochimica Acta, 2013, 102: 388–392
https://doi.org/10.1016/j.electacta.2013.04.015
25 Le  M, Ren  M, Zhang  Z, Sprunger  P T, Kurtz  R L, Flake  J C. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. Journal of the Electrochemical Society, 2011, 158(5): E45–E49
https://doi.org/10.1149/1.3561636
26 Gattrell  M, Gupta  N, Co  A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006, 594(1): 1–19
https://doi.org/10.1016/j.jelechem.2006.05.013
27 Peterson  A A, Abild-Pedersen  F, Studt  F, Rossmeisl  J, Nørskov  J K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 2010, 3(9): 1311–1315
https://doi.org/10.1039/c0ee00071j
28 Yano  J, Yamasaki  S. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. Journal of Applied Electrochemistry, 2008, 38(12): 1721–1726
https://doi.org/10.1007/s10800-008-9622-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed