Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 112-120    https://doi.org/10.1007/s11783-014-0745-y
RESEARCH ARTICLE
Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration
Xiaojiang FAN1,Yi TAO1,Dequan WEI1,Xihui ZHANG1,*(),Ying LEI1,Hiroshi NOGUCHI2
1. Research Center for Environmental Engineering & Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2. Meidensha Corporation, Meiko Building, 5-5-5 Osaki, Shinagawa-ku, Tokyo 141-8616, Japan
 Download: PDF(661 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micro-polluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HoB) and neutral (HoN), weakly hydrophobic acid (WHoA) and hydrophilic matter (HiM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroacetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1-trichloroacetone (TCP) precursor and 63% of trichloronitromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000–3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200–500 Da. DOC had a close linear relationship with the formation potential of DBPs.

Keywords ceramic ultrafiltration(UF)      ozonation      organic matter      hydrophilic      hydrophobic      disinfection by-products     
Corresponding Author(s): Xihui ZHANG   
Online First Date: 09 July 2014    Issue Date: 31 December 2014
 Cite this article:   
Xiaojiang FAN,Yi TAO,Dequan WEI, et al. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0745-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/112
parameters units raw water product water Chinese drinking water standards
pH 6.59–6.94 6.4–7.0 6.5–8.5
temperature °C 18.8–21.5 18.5–21.7 not defined
turbidity NTU 8.79–62.5 <0.2 1
ammonia mg·L-1 1.192–2.581 0.01–0.65 0.5
nitrite mg·L-1 0.347–0.677 0–0.048 1.00
Fe mg·L-1 0.4–0.8 <0.05 0.3
Mn mg·L-1 0.04–0.06 <0.01 0.1
Br- mg·L-1 <0.02 <0.01 not defined
B r O 3 - mg·L-1 <0.005 <0.005 0.01
DOCa) mg·L-1 1.92–2.83 <1 not defined
CODMn mg·L-1 1.315–2.853 <0.5 3
UV254 m-1 3.4–6.6 <1 not defined
Tab.1  Characteristics of raw water and product water of the pilot plant
Fig.1  Schematic representing the pilot scale treatment process for drinking water
Fig.2  Analytical procedure for preparative fractionation of dissolved organic carbon
compound precursor ions transition ions recovery /%(n = 5) LODa)/(μg·L-1) LOQb) /(μg·L-1)
CHCl3 95±0.5 0.02 0.5
CHCl2Br 96±1 0.016 0.4
CHClBr2 95±1 0.016 0.4
CHBr3 93±1 0.025 0.6
CH 96±1 0.04 0.5
DCAN 94±2 0.05 0.4
TCAN 95±1 0.045 0.6
TCP 92±3 0.05 0.8
TCNM 93±2 0.05 0.8
MCAA 92.8 36.7 98±0.5 0.53 1.5
MBAA 136.8 78.7 101±2 0.016 0.053
DCAA 126.9 82.6 95±3 0.025 0.083
BCAA 172.6 80.8 97±3 0.04 0.12
TCAA 162.8 118.8 100±2 0.079 0.26
DBAA 218.7 80.8 102±4 0.16 0.51
BDCAA 208.0 80.7 85±2 0.4 1.3
DBCAA 252.7 80.8 91±1 0.9 2.6
Tab.2  Quality control performances during multiple parameter analyses
Fig.3  Removal of DOC during treatments with or without ozonation
Fig.4  The transformation of different fractions during treatment process((a) for without ozone, (b) for with ozone)
Fig.5  The molecular weight distribution of organic matter during UF without (a) or with ozonation(b)
Fig.6  Removal of DBPs precursors during treatments with or without ozonation (a–f) and the correlation between DOC, SUVA, THMFP, and HAAFP (g, h)
1 Chen C, Zhang X, Zhu L, He W, Han H. Changes in different organic matter fractions during conventional treatment and advanced treatment. Journal of Environmental Sciences (China), 2011, 23(4): 582–586
https://doi.org/10.1016/S1001-0742(10)60423-8 pmid: 21793399
2 Du H, Xu Y. Determination of the microbial origin of geosmin in Chinese liquor. Agricultural and Food Chemistry, 2012, 60(9): 2288–2292
https://doi.org/10.1021/jf204648e pmid: 22324746
3 Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment, 2009, 407(14): 4189–4206
https://doi.org/10.1016/j.scitotenv.2009.04.006 pmid: 19419751
4 Lavonen E E, Gonsior M, Tranvik L J, Schmitt-Kopplin P, K?hler S J. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts. Environmental Science & Technology, 2013, 47(5): 2264–2271
https://doi.org/10.1021/es304669p pmid: 23373647
5 Kim H, Dempsey B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 2013, 428: 190–197
https://doi.org/10.1016/j.memsci.2012.11.004
6 Sierka R A. An Energy Saving Process for the Reactivation of Activated Carbon Saturated with Organic Contaminants. In: Proceedings of NATO Advanced Research Workshop on Security of Industrial Water Supply and Management, Ankara, Turkey, 2010, 193–208
7 von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467
https://doi.org/10.1016/S0043-1354(02)00457-8 pmid: 12600374
8 Chiang P C, Chang E E, Liang C H. NOM characteristics and treatabilities of ozonation processes. Chemosphere, 2002, 46(6): 929–936
https://doi.org/10.1016/S0045-6535(01)00181-3 pmid: 11922074
9 Huang W J, Fang G C, Wang C C. The determination and fate of disinfection by-products from ozonation of polluted raw water. Science of the Total Environment, 2005, 345(1–3): 261–272
https://doi.org/10.1016/j.scitotenv.2004.10.019 pmid: 15919544
10 Rigobello E S, Dantas A D B, Di Bernardo L, Vieira E M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere, 2013, 92(2): 184–191
https://doi.org/10.1016/j.chemosphere.2013.03.010 pmid: 23540811
11 Chen Z, Valentine R L. The influence of the pre-oxidation of natural organic matter on the formation of N-nitrosodimethylamine (NDMA). Environmental Science & Technology, 2008, 42(14): 5062–5067
https://doi.org/10.1021/es8006673 pmid: 18754348
12 Harman B I, Koseoglu H, Yigit N O, Sayilgan E, Beyhan M, Kitis M. The removal of disinfection by-product precursors from water with ceramic membranes. Water Science and Technology, 2010, 62(3): 547–555
https://doi.org/10.2166/wst.2010.260 pmid: 20706002
13 Karnik B S, Davies S H R, Chen K C, Jaglowski D R, Baumann M J, Masten S J. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Research, 2005, 39(4): 728–734
https://doi.org/10.1016/j.watres.2004.11.017 pmid: 15707646
14 Karnik B S, Davies S H R, Baumann M J, Masten S J. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environmental Science & Technology, 2005, 39(19): 7656–7661
https://doi.org/10.1021/es0503938 pmid: 16245840
15 Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and membrane filtration-filtration of model solutions. Desalination, 2003, 156(1–3): 257–265
https://doi.org/10.1016/S0011-9164(03)00348-5
16 Byun S, Davies S H R, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Research, 2011, 45(1): 163–170
https://doi.org/10.1016/j.watres.2010.08.031 pmid: 20822791
17 Sartor M, Schlichter B, Gatjal H, Mavrov V. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand. Desalination, 2008, 222(1–3): 528–540
https://doi.org/10.1016/j.desal.2007.03.013
18 Zhang X H, Guo J N, Wang L Y, Hu J Y, Zhu J. In situ ozonation to control ceramic membrane fouling in drinking water treatment. Desalination, 2013, 328: 1–7
https://doi.org/10.1016/j.desal.2013.08.010
19 Fan X J, Tao Y, Wang L Y, Zhang X H, Lei Y, Wang Z, Noguchi H. Performance of integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water. Desalination, 2014, 335(1): 47–54
https://doi.org/10.1016/j.desal.2013.12.014
20 Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 1981, 15(5): 578–587
https://doi.org/10.1021/es00087a010 pmid: 22283952
21 Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 2001, 35(4): 985–996
https://doi.org/10.1016/S0043-1354(00)00350-X pmid: 11235894
22 Clesceri L S, Greenberg A E, Eaton A D. Standard Methods for Examination of Water & Wastewater, 20th ed. American Public Health Association, 1998
23 Lei Y, Yasojima M, Wang L Y, Fan X J, Tao Y, Zhang X H. Determination of nine haloacetic acids in tap water by liquid chromatography-tandem mass spectrometry. China Water and Wastewater, 2013, 29(20): 124–129 (in Chinese)
24 Zhou Q H, Cabaniss S E, Maurice P A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Research, 2000, 34(1): 3505–3514
https://doi.org/10.1016/S0043-1354(00)00115-9
25 Yang J, Yuan D, Weng T. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 2010, 263(1–3): 271–278
https://doi.org/10.1016/j.desal.2010.06.069
26 Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment, 2009, 407(14): 4189–4206
https://doi.org/10.1016/j.scitotenv.2009.04.006 pmid: 19419751
27 Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for the drinking water production from surface water. Desalination, 2004, 168: 307–317
https://doi.org/10.1016/j.desal.2004.07.014
28 Volk C, Renner P, Roche H, Paillard H, Joret J C. Effects of ozone on the production of biodegradable dissolved organic carbon (BDOC) during water treatment. Ozone Science and Engineering, 1993, 15(5): 389–404
https://doi.org/10.1080/01919512.1993.10555731
29 Qiao L, Liu Y, Hudson S P, Yang P, Magner E, Liu B. A nanoporous reactor for efficient proteolysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(1): 151–157
https://doi.org/10.1002/chem.200701102 pmid: 17960551
30 Monteiro M J. Nanoreactors for polymerizations and organic reactions. Marcromolecules, 2010, 43(3): 1159–1168
https://doi.org/10.1021/ma902348r
[1] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[2] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[3] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[4] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[5] Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu. Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water[J]. Front. Environ. Sci. Eng., 2021, 15(4): 68-.
[6] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[7] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[8] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[11] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[12] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[13] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[14] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[15] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed