Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 988-994    https://doi.org/10.1007/s11783-014-0751-0
RESEARCH ARTICLE
Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients
Alberto MANNUCCI1,*(),Giulio MUNZ1,Gualtiero MORI2,Claudio LUBELLO1,Jan A. OLESZKIEWICZ3
1. Department of Civil and Environmental Engineering, University of Florence, Florence 50139, Italy
2. Consorzio Cuoiodepur, Pisa 56020, Italy
3. Department of Civil Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
 Download: PDF(406 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this work is to identify the range of applicability of Arrhenius type temperature dependence for Ammonia Oxidizing Bacteria (AOB) subjected to temperature time gradients through continuous titrimetric tests. An innovative online differential titrimetric technique was used to continuously monitor the maximum biologic ammonia oxidation rate of the biomass selected in a pilot scale membrane bioreactor, as a function of temperature time gradients. The monitoring technique is based on the measurement of alkalinity and hydrogen peroxide consumption rates in two parallel reactors operated in non-limiting substrate conditions for AOB; both reactors were continuously fed with mixed liquor and in one of them AOB were inhibited with allylthiourea. The effects of temperature decrease rates in the range 1 to 4°C·h−1 were evaluated by controlling the titrimetric reactor in the temperature range 10°C–20°C. The dependence of growth kinetics on temperature time gradients and the range of applicability of Arrhenius model for temperature dependency of AOB growth kinetics were assessed. The Arrhenius model was found to be accurate only with temperature gradients lower than 2°C·h−1. The estimated Arrhenius coefficients (θ) were shown to increase from 1.07 to 1.6 when the temperature decrease rate reached 4°C·h−1.

Keywords nitrification rate      temperature effect      continuous titrimetric tests      time-gradient temperature variations      Ammonia Oxidizing Bacteria (AOB)     
Corresponding Author(s): Alberto MANNUCCI   
Online First Date: 11 August 2014    Issue Date: 23 November 2015
 Cite this article:   
Alberto MANNUCCI,Giulio MUNZ,Gualtiero MORI, et al. Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients[J]. Front. Environ. Sci. Eng., 2015, 9(6): 988-994.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0751-0
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/988
Fig.1  Schematic of the titrimeter: mixed liquor for inhibited (R1) and control reactor (R2) feeding pumps (P1 and P2), substrate dosing pumps (P3 and P4), hydrogen peroxide (P7 and P8) and sodium hydroxide (P5 and P6) dosing pumps. Both reactor are mixed and temperature is regulated through a constant recirculation of water at controlled temperature in the external jacket
Fig.2  Temperature, NaOH dosing rate in R1 (inhibited) and R2 and Nitrification rate trend in time. R1 and R2 diamond points represent the cumulative NaOH consumption
Fig.3  Average relative nitrification rate trend obtained with a temperature decrease of 2 and 3°C·h−1 gradients
Fig.4  Calibrated temperature correction factor (θ) as a function of temperature decreasing rate
Fig.5  Temperature correction factor as a ΔT function
reference reactor type temperature range/°C temperature variation θ
[22] batch 5–20 sudden 1.172
batch 20–35 sudden 1.062
SBR 13–25 gradual (0.1°C·d−1) 1.051
[9] batch 10–20 sudden 1.116
batch 10–20 gradual (2°C·d−1) 1.072
[12] SBR 10–30 sudden 1.088
[21] SBR 2–7 sudden 1.02
SBR 7–15 sudden 1.4
[16] batch 10–20 sudden 1.98
[18] real WWTP 21–35 seasonal 1.045
Tab.1  Estimated AOB growth temperature correction factor in suspended-growth systems
1 Vladimirov  N, Løvdok  L, Lebiedz  D, Sourjik  V. Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLos Computational Biology, 2008, 4(12): e1000242
https://doi.org/10.1371/journal.pcbi.1000242 pmid: 19096502
2 Berg  H C. Random Walks in Biology.  Princeton, USA: Princeton University Press, 1991
3 Salman  H, Libchaber  A. A concentration-dependent switch in the bacterial response to temperature. Nature Cell Biology, 2007, 9(9): 1098–1100
https://doi.org/10.1038/ncb1632 pmid: 17694049
4 Salman  H, Zilman  A, Loverdo  C, Jeffroy  M, Libchaber  A. Solitary modes of bacterial culture in a temperature gradient. Physical Review Letters, 2006, 97(11): 118101
https://doi.org/10.1103/PhysRevLett.97.118101 pmid: 17025931
5 Paster  E, Ryu  W S. The thermal impulse response of Escherichia coli.  Proceedings of the National Academy of Sciences of the United States of America, 2008, 115(14): 5373–5377 doi: 10.1073/pnas.0709903105
6 Beales  N. Adaptation of microorganisms to cold temperatures, week acid preservatives, low pH and osmotic stress, a review. Comprehensive Review Food Science Safety, 2004, 3(1): 1–20
https://doi.org/10.1111/j.1541-4337.2004.tb00057.x
7 Lee  S, Cho  K, Lim  J, Kim  W, Hwang  S. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population. Bioresource Technology, 2011, 102(5): 4196–4203
https://doi.org/10.1016/j.biortech.2010.12.035 pmid: 21196116
8 Hébraud  M, Potier  P. Cold shock response and low temperature adaptation in psychrotrophic bacteria. Journal of Molecular Microbiology and Biotechnology, 1999, 1(2): 211–219
pmid: 10943552
9 Hwang   J  H,  Oleszkiewicz  J  A.  Effect  of  cold-temperature  shock on  nitrification. Water  Environment  Research,  2007,  79(9):  964–968
https://doi.org/10.2175/106143007X176022 pmid: 17910364
10 Plaza  E, Trela  J, Hultman  B. Impact of seeding with nitrifying bacteria on nitrification process efficiency. Water Science and Technology, 2001, 43(1): 155–163
pmid: 11379086
11 Head  M A, Oleszkiewicz  J A. Bioaugmentation for nitrification at cold temperatures. Water Research, 2004, 38(3): 523–530
https://doi.org/10.1016/j.watres.2003.11.003 pmid: 14723920
12 Salem  S, Berends  D H, Heijnen  J J, Van Loosdrecht  M C. Bio-augmentation by nitrification with return sludge. Water Research, 2003, 37(8): 1794–1804
https://doi.org/10.1016/S0043-1354(02)00550-X pmid: 12697224
13 Zhu  S, Chen  S. The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering, 2002, 26(4): 221–237
https://doi.org/10.1016/S0144-8609(02)00022-5
14 Knowles  G, Downing  A L, Barrett  M J. Determination of kinetic constants for nitrifying bacteria in mixed cultures, with the aid of an electronic computer. Journal of General Microbiology, 1965, 38(2): 263–278
https://doi.org/10.1099/00221287-38-2-263 pmid: 14287204
15 Painter  H A, Loveless  J E. Effect of temperature and pH value on the growth-rate constant of nitrifying bacteria in the activated-sludge process. Water Research, 1983, 17(3): 237–248
https://doi.org/10.1016/0043-1354(83)90176-8
16 Sözen  S, Orhon  D, San  H A. A new approach for the evaluation of the maximum specific growth rate in nitrification. Water Research, 1996, 30(7): 1661–1669
https://doi.org/10.1016/0043-1354(96)00031-0
17 Henze  M, Gujer  W, Mino  T, van Loosdrecht  M C M. Activated Sludge ModelsASM1, ASM2, ASM2d and ASM3.  Scientific and Technical Report No.9. London: IWA Publishing, 2000
18 Görgün  E, Insel  G, Artan  N, Orhon  D. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(6): 747–756
https://doi.org/10.1080/10934520701304427 pmid: 17474001
19 Salvetti  R, Azzellino  A, Canziani  R, Bonomo  L. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors. Water Research, 2006, 40(15): 2981–2993
https://doi.org/10.1016/j.watres.2006.05.013 pmid: 16842837
20 Munz  G, Szoke  N, Oleszkiewicz  J A. Effect of ammonia oxidizing bacteria (AOB) kinetics on bioaugmentation. Bioresource Technology, 2012, 125(12): 88–96
https://doi.org/10.1016/j.biortech.2012.08.117 pmid: 23026318
21 Oleszkiewicz  J A, Berquist  S A. Low temperature nitrogen removal in sequencing batch reactors. Water Research, 1988, 22(9): 1163–1171
https://doi.org/10.1016/0043-1354(88)90012-7
22 Ficara  E, Rocco  A, Rozzi  A. Determination of nitrification kinetics by the ANITA-DO stat biosensor. Water Science and Technology, 2000, 41(12): 121–128
23 Mannucci  A, Munz  G, Mori  G, Lubello  C. On-line continuous titrimetry for biological nitrification process control.  In: Proceedings of Asset Management for Enhancing Energy Efficiency in Water and Wastewater System, Marbella 2013. London UK, IWA Publishing, 2013, 271–280
24 Guo  J, Peng  Y, Huang  H, Wang  S, Ge  S, Zhang  J, Wang  Z. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials, 2010, 179(1–3): 471–479
https://doi.org/10.1016/j.jhazmat.2010.03.027 pmid: 20381239
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed