Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 219-228    https://doi.org/10.1007/s11783-014-0760-z
RESEARCH ARTICLE
Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air
Pu ZHAO1,2,Lizhong ZHU1,2,*()
1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g−1, eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.

Keywords porous clay heterostructure      volatile organic compounds      adsorption      adsorbent      indoor air     
Corresponding Author(s): Lizhong ZHU   
Issue Date: 01 February 2016
 Cite this article:   
Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0760-z
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/219
Fig.1  TEM images of the PCH0, PCH25, PCH50 and PCH100
materials BET surface area/(m2·g−1) micropore area/(m2·g−1) external area/(m2·g−1) total pore volume/(cm3·g−1) VMicro/VMeso
PCH0 855±3.5 717±2.1 138±2.1 0.742±0.01 0.42
PCH25 964±6.8 868±3.7 96±3.7 0.752±0.03 1.26
PCH50 838±2.0 753±1.6 85±1.6 0.656±0.005 1.15
PCH75 581±1.7 532±1.1 49±1.1 0.395±0.01 1.03
PCH100 499±4.1 416±3.4 83±3.4 0.387±0.02 0.85
AC 692±2.1 625±1.9 67±1.9 0.449±0.007 2.95
Tab.1  Physical parameters of the synthesized PCH in comparison with activated carbon (AC)
Fig.2  Pore size distributions of the PCH0, PCH25, PCH50, PCH75 and PCH100. Data were calculated from the N2 adsorption/desorption isothermal curves, using the NovaWin2 software package and density functional theory (DFT)
VOCs
PCH25 PCH50 PCH75 PCH100 AC
acetaldehyde PCH0 582.80±0.2 508.80±0.2 296.00±0 275.80±0.6 270.80±0.2
toluene 701.67±0.3 740.06±0.3 655.54±0.6 328.30±0.8 280.30±0.2 550.20±0.2
Tab.2  Saturated sorption capacity of acetaldehyde and toluene onto PCH and AC at 298K
Fig.3  (a) Adsorption breakthrough curve of acetaldehyde at a relative humidity (RH) of 20% (concentration: 2.7 mg·m−3; temperature: 298K; contact time: 0.038 s). (b) Adsorption breakthrough curve of toluene at a relative humidity (RH) of 20% (concentration: 5.0 mg·m−3; temperature: 298 K; contact time: 0.038 s)
Fig.4  (a) Amount of acetaldehyde adsorbed on PCH and AC at equilibrium at a relative humidity (RH) of 20%, 50%, and 80%. (b) Amount of toluene adsorbed onto PCH at equilibrium at a relative humidity (RH) of 20%, 50%, and 80%.
Fig.5  (a) FTIR spectra of various PCHs after saturated adsorption of acetaldehyde in static adsorption experiment, (b) FTIR spectra of PCH25 after equilibrium adsorption of acetaldehyde in dynamic adsorption experiment (solid), PCH25 after saturated adsorption in static adsorption experiment (dash), in comparison with the FTIR spectrum of the pure acetaldehyde (dot)
Fig.6  XPS spectra of PCH: (a) Wide-scan XPS spectra and (b) Si 2p narrow scan of PCH25
1 Clarisse  B, Laurent  A M, Seta  N, Le Moullec  Y, El Hasnaoui  A, Momas  I. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environmental Research, 2003, 92(3): 245–253
https://doi.org/10.1016/S0013-9351(03)00039-2 pmid: 12804521
2 Weng  M, Zhu  L, Yang  K, Chen  S. Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment, 2010, 163(1 − 4 ): 573–581
https://doi.org/10.1007/s10661-009-0859-z pmid: 19353293
3 Guo  H. Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 2011, 46(11): 2280–2286
https://doi.org/10.1016/j.buildenv.2011.05.008
4 Du  Z J, Mo  J H, Zhang  Y P, Xu  Q J. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Building and Environment, 2014, 72: 75–81
https://doi.org/10.1016/j.buildenv.2013.10.013
5 Lyu  J Z, Zhu  L Z, Burda  C. Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants. Chemcatchem, 2013, 5(10): 3114–3123
https://doi.org/10.1002/cctc.201300308
6 Chiang  C Y, Liu  Y Y, Chen  Y S, Liu  H S. Absorption of hydrophobic volatile organic compounds by a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51(27): 9441–9445
https://doi.org/10.1021/ie2021637
7 Lashaki  M J, Fayaz  M, Wang  H H, Hashisho  Z, Philips  J H, Anderson  J E, Nichols  M. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environmental Science & Technology, 2012, 46(7): 4083–4090
https://doi.org/10.1021/es3000195 pmid: 22414149
8 Chen  H M, He  J H, Zhang  C B, He  H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49): 18033–18038
https://doi.org/10.1021/jp076113n
9 Li  L, Liu  S, Liu  J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. Journal of Hazardous Materials, 2011, 192(2): 683–690
https://doi.org/10.1016/j.jhazmat.2011.05.069 pmid: 21683520
10 Nouri  S, Haghseresht  F. Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption-Journal of the International Adsorption Society, 2004, 10(1): 79–86
https://doi.org/10.1023/B:ADSO.0000024037.31407.15
11 Cal  M P, Rood  M J, Larson  S M. Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation & Purification, 1996, 10(2): 117–121
https://doi.org/10.1016/0950-4214(96)00004-7
12 Chmielarz  L, Kustrowski  P, Piwowarska  Z, Dudek  B, Gil  B, Michalik  M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 88(3 − 4 ): 331–340
https://doi.org/10.1016/j.apcatb.2008.11.001
13 Chmielarz  L, Piwowarska  Z, Kustrowski  P, Gil  B, Adamski  A, Dudek  B, Michalik  M. Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 91(1 − 2 ): 449–459
https://doi.org/10.1016/j.apcatb.2009.06.014
14 Pires  J, Bestilleiro  M, Pinto  M, Gil  A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Separation and Purification Technology, 2008, 61(2): 161–167
https://doi.org/10.1016/j.seppur.2007.10.007
15 Pires  J, Araújo  A C, Carvalho  A P, Pinto  M L, González-Calbet  J M, Ramírez-Castellanos  J. Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous and Mesoporous Materials, 2004, 73(3): 175–180
https://doi.org/10.1016/j.micromeso.2004.05.009
16 Santos  C, Andrade  M, Vieira  A L, Martins  A, Pires  J, Freire  C, Carvalho  A P. Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon, 2010, 48(14): 4049–4056
https://doi.org/10.1016/j.carbon.2010.07.010
17 Nunes  C D, Pires  J, Carvalho  A P, Calhorda  M J, Ferreira  P. Synthesis and characterisation of organo-silica hydrophobic clay hetero structures for volatile organic compounds removal. Microporous and Mesoporous Materials, 2008, 111(1 − 3 ): 612–619
https://doi.org/10.1016/j.micromeso.2007.09.008
18 Qu  F, Zhu  L, Yang  K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170(1): 7–12
https://doi.org/10.1016/j.jhazmat.2009.05.027 pmid: 19505753
19 Zhu  H Y, Ding  Z, Barry  J C. Porous solids from layered clays by combined pillaring and templating approaches. Journal of Physical Chemistry B, 2002, 106(44): 11420–11429
https://doi.org/10.1021/jp014463i
20 Hu  X J, Qiao  S Z, Zhao  X S, Lu  G Q. Adsorption study of benzene in ink-bottle-like MCM-41. Industrial & Engineering Chemistry Research, 2001, 40(3): 862–867
https://doi.org/10.1021/ie000496t
21 Rege  S U, Yang  R T. Corrected Horváth-Kawazoe equations for pore-size distribution. AIChE Journal. American Institute of Chemical Engineers, 2000, 46(4): 734–750
https://doi.org/10.1002/aic.690460408
22 Wei  L M, Tang  T, Huang  B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous and Mesoporous Materials, 2004, 67(2 − 3 ): 175–179
https://doi.org/10.1016/j.micromeso.2003.11.002
23 Lippens  B C, Deboer  J H. Studies on Pore Systems In Catalysts: V. The tMethod. Journal of Catalysis, 1965, 4(3): 319–323
https://doi.org/10.1016/0021-9517(65)90307-6
24 Kowalczyk  P, Terzyk  A P, Gauden  P A, Leboda  R, Szmechtig-Gauden  E, Rychlicki  G, Ryu  Z Y, Rong  H Q. Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41(6): 1113–1125
https://doi.org/10.1016/S0008-6223(03)00019-8
25 Wang  Z M, Kaneko  K. Effect of pore width on micropore filling mechanism of SO2 in carbon micropores. Journal of Physical Chemistry B, 1998, 102(16): 2863–2868
https://doi.org/10.1021/jp973270l
26 Hanzawa  Y, Suzuki  T, Kaneko  K. Entrance-enriched micropore filling of n-nonane. Langmuir, 1994, 10(9): 2857–2859
https://doi.org/10.1021/la00021a002
27 Kosuge  K, Kubo  S, Kikukawa  N, Takemori  M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir, 2007, 23(6): 3095–3102
https://doi.org/10.1021/la062616t pmid: 17266336
28 Skubiszewska-Zięba  J, Charmas  B, Leboda  R, Staszczuk  P, Kowalczyk  P, Oleszczuk  P. Effect of hydrothermal modification on the porous structure and thermal properties of carbon-silica adsorbents (carbosils). Materials Chemistry and Physics, 2003, 78(2): 486–494
https://doi.org/10.1016/S0254-0584(02)00357-7
29 Takeuchi  M, Hidaka  M, Anpo  M. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Journal of Hazardous Materials, 2012, 237−238: 133–139
https://doi.org/10.1016/j.jhazmat.2012.08.011 pmid: 22947182
30 Xu  L, Zhu  L. Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331(1): 8–14
https://doi.org/10.1016/j.jcis.2008.11.030 pmid: 19081110
31 Cecilia  J A, García-Sancho  C, Franco  F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 2013, 176: 95–102
https://doi.org/10.1016/j.micromeso.2013.03.037
32 Pálková  H, Madejová  J, Zimowska  M, Serwicka  E M. Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 2010, 127(3): 237–244
https://doi.org/10.1016/j.micromeso.2009.07.012
33 Stefanov  B I, Topalian  Z, Granqvist  C G, Osterlund  L. Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization. Journal of Molecular Catalysis A Chemical, 2014, 381: 77–88
https://doi.org/10.1016/j.molcata.2013.10.005
34 Singh  M, Zhou  N, Paul  D K, Klabunde  K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379
https://doi.org/10.1016/j.jcat.2008.07.020
35 Cao  H B, Du  P F, Song  L X, Xiong  J, Yang  J J, Xing  T H, Liu  X, Wu  R R, Wang  M C, Shao  X L. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Materials Research Bulletin, 2013, 48(11): 4673–4678
https://doi.org/10.1016/j.materresbull.2013.08.035
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed