Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 879-887    https://doi.org/10.1007/s11783-014-0764-8
RESEARCH ARTICLE
Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor
Yuling CAI1,2,Bin LIANG1,2,Zhanqiang FANG1,2,*(),Yingying XIE1,2,Eric Pokeung TSANG2,3
1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
2. Guangdong Technology Research Centre for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China
3. Department of Science and Environmental Studies, Hong Kong Institute of Education, Hong Kong 00852, China
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni2+>Cu2+>Co2+ and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.

Keywords steel pickling waste liquor      nanoscale zero-valet metal      nanoscale zero-valent iron      humic acid      metal ion     
Corresponding Author(s): Zhanqiang FANG   
Just Accepted Date: 27 November 2014   Online First Date: 11 December 2014    Issue Date: 08 October 2015
 Cite this article:   
Yuling CAI,Bin LIANG,Zhanqiang FANG, et al. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor[J]. Front. Environ. Sci. Eng., 2015, 9(5): 879-887.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0764-8
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/879
Fig.1  Effect of humic acid on BDE209 removal by nZVM (Fe addition= 4 g·L−1, initial concentration of BDE209= 2 mg·L−1)
Fig.2  Effect of the metal ions on BDE209 removal by nZVM, (a) Cu2+, (b) Co2+ and (c) Ni2+ (Fe addition= 4 g·L−1, initial concentration of BDE209= 2 mg·L−1)
Fig.3  Comparison of the enhanced effects of Cu2+, Co2+ and Ni2+ at (a) 0.025 mmol·L−1 and (b) 0.05 mmol·L−1
Fig.4  The combined effect of metal ions and humic acid on BDE209 removal by nZVM (Divalent metal ion= 0.05 mmol·L−1, humic acid= 10 mg·L−1, Fe addition= 4 g·L−1, initial concentration of BDE209= 2 mg·L−1; Cu2+ for a, Co2+ for b, Ni2+ for c)
Fig.5  Comparison of BDE209 removal by nZVM and nZVI (Fe addition= 4 g·L−1, initial concentration of BDE209= 2 mg·L−1)
humic acid concentration/(mg·L−1) kobs/h−1
nZVM nZVI
0 1.10 1.02
10 0.76 0.71
20 0.48 0.49
40 0.37 0.30
Tab.1  The kobs values of BDE209 removal by the two nanoparticles under different humic acid concentrations
material metal ion concentration/(mmol·L−1) kobs (Cu2+)/h−1 kobs (Co2+)/h−1 kobs (Ni2+)/h−1
nZVM 0 1.10 1. 10 1. 10
0.025 9.40 9.19 24.74
0.05 23.03 16.16 46.59
nZVI 0 1.02 1.02 1.02
0.025 8.99 7.28 24.00
0.05 21.79 13.82 42.32
Tab.2  The kobs of BDE209 removal by nZVM and nZVI in the presence of metal ions
material system kobs/h−1
nZVM nZVM 1.10
nZVM+ humic acid 0.76
nZVM+ Cu2+ 23.03
nZVM+ Co2+ 16.16
nZVM+ Ni2+ 46.59
nZVM+ humic acid+ Cu2+ 15.98
nZVM+ humic acid+ Co2+ 7.81
nZVM+ humic acid+ Ni2+ 28.65
nZVI nZVI 1.02
nZVI+ humic acid 0.71
nZVI+ Cu2+ 21.79
nZVI+ Co2+ 13.82
nZVI+ Ni2+ 42.32
nZVI+ humic acid+ Cu2+ 13.67
nZVI+ humic acid+ Co2+ 6.92
nZVI+ humic acid+ Ni2+ 28.23
Tab.3  The kobs of BDE209 removal by nZVM and nZVI under different conditions (humic acid= 10 mg·L−1, divalent metal ion= 0.05 mmol·L−1)
1 Elliott D W, Zhang W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922−4926
https://doi.org/10.1021/es0108584 pmid: 11775172
2 He F, Zhao D, Paul C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 2010, 44(7): 2360−2370
https://doi.org/10.1016/j.watres.2009.12.041 pmid: 20106501
3 Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W S, Gavaskar A, Holdsworth T. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 2005, 39(5): 1309−1318
https://doi.org/10.1021/es0490018 pmid: 15787371
4 Fang Z, Qiu X, Chen J, Qiu X. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34−41
https://doi.org/10.1016/j.desal.2010.09.003
5 Fang Z, Qiu X, Chen J, Qiu X. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Applied Catalysis B: Environmental, 2010, 100(1−2): 221−228
https://doi.org/10.1016/j.apcatb.2010.07.035
6 Fang Z, Qiu X, Chen J, Qiu X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials, 2011, 185(2−3): 958−969
https://doi.org/10.1016/j.jhazmat.2010.09.113 pmid: 21035251
7 Hu J W, Zhuang Y, Luo J, Wei X H, Huang X F. A theoretical study on reductive debromination of polybrominated diphenyl ethers. International Journal of Molecular Sciences, 2012, 13(7): 9332−9342
https://doi.org/10.3390/ijms13079332 pmid: 22942768
8 Ma J, Qiu X, Zhang J, Duan X, Zhu T. State of polybrominated diphenyl ethers in China: an overview. Chemosphere, 2012, 88(7): 769−778
https://doi.org/10.1016/j.chemosphere.2012.03.093 pmid: 22546636
9 Tratnyek P G, Scherer M M, Deng B, Hu S. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research, 2001, 35(18): 4435−4443
https://doi.org/10.1016/S0043-1354(01)00165-8 pmid: 11763046
10 Cho H H, Park J W. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules. Chemosphere, 2006, 64(6): 1047−1052
https://doi.org/10.1016/j.chemosphere.2005.12.062 pmid: 16483631
11 Zhang Z, Cissoko N, Wo J, Xu X. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. Journal of Hazardous Materials, 2009, 165(1−3): 78−86
https://doi.org/10.1016/j.jhazmat.2008.09.080 pmid: 19008044
12 Feng J, Zhu B W, Lim T T. Reduction of chlorinated methanes with nano-scale Fe particles: effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere, 2008, 73(11): 1817−1823
https://doi.org/10.1016/j.chemosphere.2008.08.014 pmid: 18809199
13 Rutherford D W, Chiou C T, Kile D E. Influence of soil organic mattercomposition on the partition of organic compounds. Environmental Science & Technology, 1992, 26(2): 336−340
https://doi.org/10.1021/es00026a014
14 Fang Z, Qiu X, Huang R, Qiu X, Li M. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization. Desalination, 2011, 280(1−3): 224−231
https://doi.org/10.1016/j.desal.2011.07.011
15 Li X, Zhang W. Sequestration of metal cations with zerovalent iron nanoparticles — A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111(19): 6939−6946
https://doi.org/10.1021/jp0702189
16 Karabelli D, Uzum C, Shahwan T, Eroglu A E, Scott T B, Hallam K R, Lieberwirth I. Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 2008, 47(14): 4758−4764
https://doi.org/10.1021/ie800081s
17 Üzüm Ç, Shahwan T, Eroğlu A E, Lieberwirth I, Scott T B, Hallam K R. Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 2008, 144(2): 213−220
https://doi.org/10.1016/j.cej.2008.01.024
18 Doong R A, Lai Y L. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 2006, 64(3): 371−378
https://doi.org/10.1016/j.chemosphere.2005.12.038 pmid: 16466778
19 Shih Y, Chen M, Su Y. Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: Effects of copper, nickel, and ferric cations. Applied Catalysis B: Environmental, 2011, 105(1−2): 24−29
https://doi.org/10.1016/j.apcatb.2011.03.024
20 Su Y F, Hsu C Y, Shih Y H. Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere, 2012, 88(11): 1346−1352
https://doi.org/10.1016/j.chemosphere.2012.05.036 pmid: 22704216
21 Tombácz E, Libor Z, Illés E, Majzik A, Klumpp E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 2004, 35(3): 257−267
https://doi.org/10.1016/j.orggeochem.2003.11.002
22 Giasuddin A B M, Kanel S R, Choi A H. Adsorption of humic acid onto nanoscale zero-valent iron and its effect on arsenic removal. Environmental Science & Technology, 2007, 41: 2022−2027
23 Zhuang Y, Jin L, Luthy R G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere, 2012, 89(4): 426−432
https://doi.org/10.1016/j.chemosphere.2012.05.078 pmid: 22732301
24 Wang X, Chen C, Chang Y, Liu H. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials, 2009, 161(2−3): 815−823
https://doi.org/10.1016/j.jhazmat.2008.04.027 pmid: 18513856
25 Wang X, Zhu M, Liu H, Ma J, Li F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Science of the Total Environment, 2013, 449: 157−167
https://doi.org/10.1016/j.scitotenv.2013.01.008 pmid: 23425792
26 Zhu M, Wang X, Yang J, Liu H, Ma J. Study on the physicochemical properties of poly(methylmethacrylate) (PMMA) modified Pd/Fe nanocomposites: roles of PMMA and PMMA/ethanol. Applied Surface Science, 2013, 282: 851−861
https://doi.org/10.1016/j.apsusc.2013.06.070
27 Shen Y H. Sorption of natural dissolved organic matter on soil. Chemosphere, 1999, 38(7): 1505−1515
https://doi.org/10.1016/S0045-6535(98)00371-3
[1] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[2] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[3] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[4] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[5] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[6] Huan HE,Qian SUI,Shuguang LU,Wentao ZHAO,Zhaofu QIU,Gang YU. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
[7] Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN. Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles[J]. Front. Environ. Sci. Eng., 2015, 9(5): 832-839.
[8] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[9] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
[10] Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 105-111.
[11] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[12] Yuning YANG,Huan LI,Jinyi LI. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods[J]. Front. Environ. Sci. Eng., 2014, 8(6): 854-862.
[13] TANG Chengli,YAN Wei,ZHENG Chunli. Electrochemical oxidation of humic acid at the antimony- and nickel-doped tin oxide electrode[J]. Front.Environ.Sci.Eng., 2014, 8(3): 337-344.
[14] LIU Hanchao,FENG Suping,ZHANG Nannan,DU Xiaolin,LIU Yongli. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid[J]. Front.Environ.Sci.Eng., 2014, 8(3): 329-336.
[15] XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun. Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff[J]. Front.Environ.Sci.Eng., 2014, 8(3): 463-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed