Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 236-243    https://doi.org/10.1007/s11783-014-0765-7
RESEARCH ARTICLE
Removal of elemental mercury by KI-impregnated clay
Boxiong SHEN1,2,*(),Jianhong CHEN2,Ji CAI2
1. School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
2. College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study described the use of clay impregnated by KI in gas phase elemental mercury (Hgo) removal in flue gas. The effects of KI loading, temperature, O2, SO2 and H2O on Hgo removal were investigated using a fixed bed reactor. The Hgo removal efficiency of KI-clay with 3% KI loading could maintain at a high level (approximately 80 %) after 3 h. The KI-clay demonstrated to be a potential adsorbent for Hgo removal when compared with activated carbon based adsorbent. O2 was found to be an important factor in improving the Hgo removal. O2 was demonstrated to assist the transfer of KI to I2 on the surface of KI-clay, which could react with Hgo directly. NO and SO2 could slightly improve Hgo removal, while H2O inhibited it greatly. The results indicated that after adsorption, most of the mercury escaped from the surface again. Some of the mercury may have been oxidized as it left the surface. The results demonstrated that the chemical reaction primarily occurred between KI and mercury on the surface of the KI-clay.

Keywords clay      elemental mercury      removal efficiency      potassium iodide      mechanism     
Corresponding Author(s): Boxiong SHEN   
Just Accepted Date: 27 November 2014   Online First Date: 12 December 2014    Issue Date: 01 February 2016
 Cite this article:   
Boxiong SHEN,Jianhong CHEN,Ji CAI. Removal of elemental mercury by KI-impregnated clay[J]. Front. Environ. Sci. Eng., 2016, 10(2): 236-243.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0765-7
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/236
sample SBET/(m2·g−1) total porevolume /(cm3·g−1) average poresize /nm
Clay 77.37 0.157 10.15
KI(1)-clay 76.70 0.142 10.05
KI(3)-clay 57.31 0.130 8.67
Tab.1  Physical properties of different materials
Fig.1  Effects of KI loading on Hgo removal efficiency (Reaction condition: 80 °C, 6vol.% O2, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
Fig.2  Effects of temperature on Hgo removal efficiency for KI(1)-clay.(Reaction condition: 80°C−180°C, 6 vol.% O2, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
Fig.3  Effects of O2 concentration on Hgo removal efficiency for KI(1)-clay.(Reaction condition: 80°C, 0−10 vol.% O2, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
Fig.4  Effects of NO, SO2 and H2O on Hgo removal efficiency for KI(1)-clay.(Reaction condition: 80°C−180°C, 6 vol.% O2, 0−500 ppm SO2, 0−100 ppm NO, 0−3 vol.% H2O, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
Fig.5  Hg species at the outlet of the reactor for KI(1)-clay(Reaction condition: 80°C−180°C, 6 vol.% O2, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
Fig.6  The changes of the percentage of Hgoxi/HgT vs. adsorption time at the outlet of the reactor (Reaction condition: 80°C−180°C, 6 vol.% O2, initial Hgo 26±2 μg·m−3 and GHSV 106 h−1)
1 Lee K J, Lee T G. A review of international trends in mercury management and available options for permanent or long-term mercury storage. Journal of Hazardous Materials, 2012, 241−242: 1−13
2 Yang H, Xu Z, Fan M, Bland A E, Judkins R R. Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials, 2007, 146(1−2): 1−11
3 Li P, Feng X B, Qiu G L, Shang L H, Li Z G. Mercury pollution in Asia: A review of the contaminated sites. Journal of Hazardous Materials, 2009, 168(2−3): 591−601
4 Zhang L, Wong M H. Environmental mercury contamination in China: sources and impacts. Environment International, 2007, 33(1): 108−121
https://doi.org/10.1016/j.envint.2006.06.022
5 Masaki O, Md A U, Eiji S, Wu S J. Fuel, 2008, 87(17−18): 3610−3615.
6 Vidic R D, Siler D P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 2001, 39(1): 3−14
https://doi.org/10.1016/S0008-6223(00)00081-6
7 Granite E J, Pennline H W, Hoffman J S. Effects of photochemical formation of mercuric oxide. Industrial & Engineering Chemistry Research, 1999, 38(12): 5034−5037
https://doi.org/10.1021/ie9904495
8 Granite E J, Pennline H W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470−5476
https://doi.org/10.1021/ie020251b
9 McLarnon C R, Granite E J, Pennline H W. The PCO process for photochemical removal of mercury from flue gas. Fuel Processing Technology, 2005, 87(1): 85−89
https://doi.org/10.1016/j.fuproc.2005.07.001
10 Zhang B, Zhong Z, Ding K, Yu L. Photooxidative removal of Hgo from simulated flue gas using UV/H2O2 advanced oxidation process: Influence of operational parameters. Korean Journal of Chemical Engineering, 2014, 31(1): 56−61
https://doi.org/10.1007/s11814-013-0179-4
11 Nolan P S, Redinger K E, Amrhein G T, Kudlac G A. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems. Fuel Processing Technology, 2004, 85(6−7): 587−600
https://doi.org/10.1016/j.fuproc.2003.11.009
12 He C, Shen B, Chen J, Cai J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environmental Science & Technology, 2014, 48(14): 7891−7898
https://doi.org/10.1021/es5007719
13 Pavlish J H, Sondreal E A, Mann M D, Olson E S, Galbreath K C, Laudal D L, Benson S A. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 2003, 82(2−3): 89−165
https://doi.org/10.1016/S0378-3820(03)00059-6
14 Zeng H C, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel, 2004, 83(1): 143−146
https://doi.org/10.1016/S0016-2361(03)00235-7
15 De M, Azargohar R, Dalai A K, Shewchuk S R. Mercury removal by bio-char based modified activated carbons. Fuel, 2013, 103: 570−578
https://doi.org/10.1016/j.fuel.2012.08.011
16 Cai J, Shen B, Li Z, Chen J, He C. Removal of elemental mercury by clays impregnated with KI and KBr. Chemical Engineering Journal, 2014, 241: 19−27
https://doi.org/10.1016/j.cej.2013.11.072
17 Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology, 2006, 40(18): 5601−5609
https://doi.org/10.1021/es060504i
18 Shen B X, Yao Y, Ma H Q, Liu T. Ceria modified MnOx/TiO2-pillared clays catalysts for the selective catalytic reduction of NO with NH3 at low temperature. Chinese Journal of Catalysis, 2011, 32(11−12): 1803−1811
https://doi.org/10.1016/S1872-2067(10)60269-0
19 Shen B, Ma H, Yao Y. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. Journal of Environmental Sciences (China), 2012, 24(3): 499−506
https://doi.org/10.1016/S1001-0742(11)60756-0
20 Tian Z Y, Chafik T, Assebban M, Harti S, Bahlawane N, Kouotou P M, Katharina K H. Towards biofuel combustion with an easily extruded clay as a natural catalyst. Applied Energy, 2013, 107: 149−156
https://doi.org/10.1016/j.apenergy.2013.02.025
21 Bhardwaj R, Chen X, Vidic R D. Impact of fly ash composition on mercury speciation in simulated flue gas. Journal of the Air & Waste Management Association, 2009, 59(11): 1331−1338
https://doi.org/10.3155/1047-3289.59.11.1331
22 Zhao P, Guo X, Zheng C. Removal of elemental mercury by iodine-modified rice husk ash sorbents. Journal of Environmental Sciences (China), 2010, 22(10): 1629−1636
https://doi.org/10.1016/S1001-0742(09)60299-0
23 Lopez-Anton M A, Yuan Y, Perry R. Maroto-ValerM M. Analysis of mercury species present during coal combustion by thermal desorption. Fuel, 2010, 89 (3): 629−634
24 Huggins F E, Yap N, Huffman G P, Senior C L. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures. Fuel Processing Technology, 2003, 82(2−3): 167−196
https://doi.org/10.1016/S0378-3820(03)00068-7
25 Huggins Y C, Yan N, Qu Z, Qiao S, Jia J. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas. Journal of Hazardous Materials, 2009, 166(2−3): 776−781
26 Hsi H C, Chen C T. Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel, 2012, 98: 229−235
https://doi.org/10.1016/j.fuel.2012.04.011
27 Ochiai R, Uddin M A, Sasaoka E, Wu S. Effects of HCl and SO2 concentration on mercury removal by activated carbon sorbents in coal-derived flue gas. Energy & Fuels, 2009, 23(10): 4734−4739
https://doi.org/10.1021/ef900057e
28 Lopez-Anton M A, Tascon J M D. Martinez-TarazonaM R. Retention of mercury in activated carbons in coal combustion and gasification flue gases. Fuel Processing Technology, 2002, 77−78: 353−358
29 Diamantopoulou I, Skodras G, Sakellaropoulos G P. Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology, 2010, 91(2): 158−163
https://doi.org/10.1016/j.fuproc.2009.09.005
30 Miller S J, Dunham G E, Olson E S, Brown T D. Flue gas effects on a carbon-based mercury sorbent. Fuel Processing Technology, 2000, 65−66: 343−363
https://doi.org/10.1016/S0378-3820(99)00103-4
31 Uddin M A, Yamada T, Ochiai R, Sasaoka E, Wu S. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon. Energy & Fuels, 2008, 22(4): 2284−2289
https://doi.org/10.1021/ef800134t
32 Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research, 2000, 39(4): 1020−1029
https://doi.org/10.1021/ie990758v
33 Lee S J, Seo Y C, Jurng J, Lee T G. Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmospheric Environment, 2004, 38(28): 4887−4893
https://doi.org/10.1016/j.atmosenv.2004.05.043
[1] Supplementary Material1 Download
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[4] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[5] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[6] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[7] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[8] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[9] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[10] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[11] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[12] Siqi Li, Min Zheng, Shuang Wu, Yu Xue, Yanchen Liu, Chengwen Wang, Xia Huang. The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge[J]. Front. Environ. Sci. Eng., 2019, 13(6): 82-.
[13] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[14] Weihua Wang, Wanfeng Zhang, Hong Liang, Dawen Gao. Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(3): 34-.
[15] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed