Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 244-252    https://doi.org/10.1007/s11783-015-0768-z
RESEARCH ARTICLE
Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement
Juntao HUO1,Xiaohui LU1,Xinning WANG1,Hong CHEN1,Xingnan YE1,Song Gao2,Deborah S. Gross3,Jianmin CHEN1,4,Xin YANG1,4,*()
1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
2. Division of Math, Science and Technology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
3. Department of Chemistry, Carleton College, Northfield, MN 55057, USA
4. Fudan-Tyndall Center, Fudan University, Shanghai 200433, China
 Download: PDF(471 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fresh straw burning (SB) particles were generated in the laboratory by the combustion of rice straw and corn straw. The chemical composition and mixing state of the fresh SB particles were investigated by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Based on the mass spectral patterns, the SB particles were clustered into four major types: Salt, Organic Carbon (OC), Elemental Carbon (EC), and internally mixed particles of EC and OC (EC-OC). In addition, particles containing ash, polycyclic aromatic hydrocarbons, heavy metals or nicotine were also observed. Physical and chemical changes of the SB particles immediately after the emission were analyzed with highly time-resolved data. During the aging processes, the average particle size increased steadily. Freshly emitted organic compounds were gradually oxidized to more oxygenated compounds in the OC-containing particles. Meanwhile, an important displacement reaction (2KCl+ SO42→ K2SO4 + 2Cl) was observed. The marker ions for SB particles were optimized and applied to identify the SB particles in the ambient atmosphere. The fluctuation of the number fraction of ambient SB particles sorted by ATOFMS agrees well with that of water soluble K+ measured by an online ion chromatography, demonstrating that the optimized marker ions could be good tracers for SB particles in field measurements.

Keywords crop straw burning particles      mixing state      aging process      ATOFMS      ion markers     
Corresponding Author(s): Xin YANG   
Just Accepted Date: 12 December 2014   Online First Date: 31 December 2014    Issue Date: 01 February 2016
 Cite this article:   
Juntao HUO,Xiaohui LU,Xinning WANG, et al. Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement[J]. Front. Environ. Sci. Eng., 2016, 10(2): 244-252.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0768-z
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/244
Fig.1  Schematic diagram of the combustion experiments
Fig.2  ATOFMS average mass spectra (MS) of rice-SB and corn-SB particles: (a) positive MS of rice-SB particles, (b) negative MS of rice-SB particles, (c) positive MS of corn-SB particles and (d) negative MS of corn-SB particles
Fig.3  ATOFMS average mass spectra of the four major particle types (EC-OC, OC, Salt, EC) for rice-SB particles: (a) positive MS of EC-OC, (b) negative MS of EC-OC, (c) positive MS of OC, (d) negative MS of OC, (e) positive MS of Salt, (f) negative MS of Salt, (g) positive MS of EC and (h) negative MS of EC
Fig.4  Variation of (a) the average particle size and the average relative peak area for (b) C2H3O+, (c) C 2 H 3 + and C 4 H 3 + , (d) K2Cl+ and K 3 S O 4 + during the particle growth
step database standard function result
step 1 all area{39 K+}>1000 and SB-K
area{56 CaO+/Fe+}<50
area{−76 S i O }<50
step 2 SB-K area{−26 CN}>500 and SB-1
area{−42 CNO}>50
step 3 SB-K area{113 K2Cl+}>50 or SB-2
area{213 K 3 S O 4 + }>50
step 4 union(SB-1, SB-2) SB
Tab.1  Optimized ion markers and the procedures to identify SB particles
Fig.5  Comparison between the number fraction of ambient SB particles detected by ATOFMS and the mass fraction of water soluble K+ in PM2.5 measured by MARGA
1 Crutzen  P J, Andreae  M O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 1990, 250(4988): 1669–1678
https://doi.org/10.1126/science.250.4988.1669 pmid: 17734705
2 Hobbs  P V, Reid  J S, Kotchenruther  R A, Ferek  R J, Weiss  R. Direct radiative forcing by smoke from biomass burning. Science, 1997, 275(5307): 1776–1778
https://doi.org/10.1126/science.275.5307.1777 pmid: 9065398
3 Watson  J G. Visibility: science and regulation. Journal of the Air & Waste Management Association, 2002, 52(6): 628–713
https://doi.org/10.1080/10473289.2002.10470813 pmid: 12074426
4 Streets  D G, Yarber  K F, Woo  J H, Carmichael  G R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 2003, 17(4): 1099 
https://doi.org/10.1029/2003GB002040
5 Gadde  B, Bonnet  S, Menke  C, Garivait  S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 2009, 157(5): 1554–1558
https://doi.org/10.1016/j.envpol.2009.01.004 pmid: 19201513
6 Ryu  S Y, Kim  J E, Zhuanshi  H, Kim  Y J, Kang  G U. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air & Waste Management Association, 2004, 54(9): 1124–1137 doi:10.1080/10473289.2004.10471018
pmid: 15468665
7 Zhang  H F, Ye  X N, Cheng  T T, Chen  J M, Yang  X, Wang  L, Zhang  R Y. A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmospheric Environment, 2008, 42(36): 8432–8441
https://doi.org/10.1016/j.atmosenv.2008.08.015
8 Cao  G L, Zhang  X Y, Wang  Y Q, Zheng  F C. Estimation of emissions from field burning of crop straw in China. Chinese Science Bulletin, 2008, 53(5): 784–790
https://doi.org/10.1007/s11434-008-0145-4
9 Qin  Y, Xie  S D. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environmental Pollution, 2011, 159(12): 3316–3323
https://doi.org/10.1016/j.envpol.2011.08.042 pmid: 21911273
10 Li  X, Wang  S, Duan  L, Hao  J, Li  C, Chen  Y, Yang  L. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology, 2007, 41(17): 6052–6058
https://doi.org/10.1021/es0705137 pmid: 17937281
11 Reid  J S, Koppmann  R, Eck  T F, Eleuterio  D P. A review of biomass burning emissions, Part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5(3): 799–825
https://doi.org/10.5194/acp-5-799-2005
12 Healy  R M, Hellebust  S, Kourtchev  I, Allanic  A, O'Connor  I P, Bell  J M, Healy  D A, Sodeau  J R, Wenger  J C. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics, 2010, 10(19): 9593–9613
https://doi.org/10.5194/acp-10-9593-2010
13 Zauscher  M D, Wang  Y, Moore  M J K, Gaston  C J, Prather  K A. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environmental Science & Technology, 2013, 47(14): 7633–7643
https://doi.org/10.1021/es4004137 pmid: 23750590
14 Pratt  K A, Murphy  S M, Subramanian  R, DeMott  P J, Kok  G L, Campos  T, Rogers  D C, Prenni  A J, Heymsfield  A J, Seinfeld  J H, Prather  K A. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics, 2011, 11(24): 12549–12565
https://doi.org/10.5194/acp-11-12549-2011
15 Prather  K A, Nordmeyer  T, Salt  K. Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry. Analytical Chemistry, 1994, 66(9): 1403–1407
https://doi.org/10.1021/ac00081a007
16 Yang  F, Chen  H, Wang  X N, Yang  X, Du  J F, Chen  J M. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: mixing state and formation mechanism. Atmospheric Environment, 2009, 43(25): 3876–3882
https://doi.org/10.1016/j.atmosenv.2009.05.002
17 Wang  X, Williams  B J, Wang X, Tang  Y, Huang  Y, Kong  L, Yang  X, Biswas  P. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics, 2013, 13(21): 10919–10932
https://doi.org/10.5194/acp-13-10919-2013
18 Bi  X H, Zhang  G H, Li  L, Wang  X M, Li  M, Sheng  G Y, Fu  J M, Zhou  Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment, 2011, 45(20): 3447–3453
https://doi.org/10.1016/j.atmosenv.2011.03.034
19 Silva  P J, Liu  D Y, Noble  C A, Prather  K A. Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environmental Science & Technology, 1999, 33(18): 3068–3076
https://doi.org/10.1021/es980544p
20 Pagels  J, Dutcher  D D, Stolzenburg  M R, McMurry  P H, Gälli  M E, Gross  D S. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components. Journal of Geophysical Research, D, Atmospheres, 2013, 118(2): 859–870
https://doi.org/10.1029/2012JD018389
21 Song  X H, Hopke  P K, Fergenson  D P, Prather  K A. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Analytical Chemistry, 1999, 71(4): 860–865
https://doi.org/10.1021/ac9809682
22 Gao  S, Hegg  D A, Hobbs  P V, Kirchstetter  T W, Magi  B I, Sadilek  M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8491
https://doi.org/10.1029/2002JD002324
23 McMeeking  G R, Kreidenweis  S M, Baker  S, Carrico  C M, Chow  J C, Collett  J L, Hao  W M, Holden  A S, Kirchstetter  T W, Malm  W C, Moosmuller  H, Sullivan  A P, Wold  C E. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D19210
https://doi.org/10.1029/2009JD011836
24 Hudson  P K, Murphy  D M, Cziczo  D J, Thomson  D S, de Gouw  J A, Warneke  C, Holloway  J, Jost  J R, Hubler  G. Biomass-burning particle measurements: characteristic composition and chemical processing. Journal of Geophysical Research, D, Atmospheres, 2004, 109(D23): D23S27
https://doi.org/10.1029/2003JD004398
25 Pósfai  M, Simonics  R, Li  J, Hobbs  P V, Buseck  P R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8483
https://doi.org/10.1029/2002JD002291
26 Kulmala  M, Dal Maso  M, Mäkelä  J M, Pirjola  L, Väkevä  M, Aalto  P, Miikkulainen  P, Hämeri  K, O'Dowd  C D. On the formation, growth and composition of nucleation mode particles. Tellus. Series B, Chemical and Physical Meteorology, 2001, 53(4): 479–490
https://doi.org/10.1034/j.1600-0889.2001.d01-33.x
27 Hennigan  C J, Sullivan  A P, Collett  J L Jr, Robinson  A L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters, 2010, 37(9): L09806
https://doi.org/10.1029/2010GL043088
28 Kessler  S H, Smith  J D, Che  D L, Worsnop  D R, Wilson  K R, Kroll  J H. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environmental Science & Technology, 2010, 44(18): 7005–7010
https://doi.org/10.1021/es101465m pmid: 20707414
29 Li  J, Pósfai  M, Hobbs  P V, Buseck  P R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8484
https://doi.org/10.1029/2002JD002310
30 Reid  J S, Hobbs  P V. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, D, Atmospheres, 1998, 103(D24): 32013–32030
https://doi.org/10.1029/98JD00159
31 Kreidenweis  S M, Remer  L A, Bruintjes  R, Dubovik  O. Smoke aerosol from biomass burning in Mexico: hygroscopic smoke optical model. Journal of Geophysical Research, D, Atmospheres, 2001, 106(D5): 4831–4844
https://doi.org/10.1029/2000JD900488
32 Yokelson  R J, Crounse  J D, DeCarlo  P F, Karl  T, Urbanski  S, Atlas  E, Campos  T, Shinozuka  Y, Kapustin  V, Clarke  A D, Weinheimer  A, Knapp  D J, Montzka  D D, Holloway  J, Weibring  P, Flocke  F, Zheng  W, Toohey  D, Wennberg  P O, Wiedinmyer  C, Mauldin  L, Fried  A, Richter  D, Walega  J, Jimenez  J L, Adachi  K, Buseck  P R, Hall  S R, Shetter  R. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9(15): 5785–5812
https://doi.org/10.5194/acp-9-5785-2009
33 Pekney  N J, Davidson  C I, Bein  K J, Wexler  A S, Johnston  M V. Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment, 2006, 40(Suppl. 2): 411–423
34 Bein  K J, Zhao  Y, Johnston  M V, Wexler  A S. Identification of sources of atmospheric PM at the Pittsburgh Supersite—Part III: Source characterization. Atmospheric Environment, 2007, 41(19): 3974–3992
https://doi.org/10.1016/j.atmosenv.2007.01.039
35 Du  H, Kong  L, Cheng  T, Chen  J, Du  J, Li  L, Xia  X, Leng  C, Huang  G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment, 2011, 45(29): 5131–5137
https://doi.org/10.1016/j.atmosenv.2011.06.027
[1] Supplementary Material Download
[1] Jun Hu, Fengkui Duan, Kebin He, Yongliang Ma, Shuping Dong, Xiande Liu. Characteristics and mixing state of S-rich particles in haze episodes in Beijing[J]. Front. Environ. Sci. Eng., 2016, 10(5): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed