Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1076-1083    https://doi.org/10.1007/s11783-015-0770-5
RESEARCH ARTICLE
Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse
Xinwei LI1,2,Hanchang SHI1,*(),Kuixiao LI2,Liang ZHANG2
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Drainage Group Co. Ltd., Beijing 100044, China
 Download: PDF(398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.

Keywords wastewater treatment      micropollutant removal      ozonation      biofiltration      toxicity     
Corresponding Author(s): Hanchang SHI   
Online First Date: 08 January 2015    Issue Date: 23 November 2015
 Cite this article:   
Xinwei LI,Hanchang SHI,Kuixiao LI, et al. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0770-5
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1076
parameters /(mg·L−1) COD TOC TN N H 4 + -N N O 2 -N N O 3 -N TP SS
secondary effluent 30–40 8–11 25–30 0.3–1.5 0–0.3 22–28 0.3–0.5 8–12
reuse standards as scenic water 15 5 0.5 10
local discharge standards 30 15 1.5 0.3 5
Tab.1  Secondary effluents quality of Gaobeidian WWTP and standards for discharge and scenic environment reuse
Fig.1  Process of the advanced wastewater treatment
Fig.2  Variations of COD and TOC during advanced treatment (SE: secondary effluent, DNBF-IN: influent of DNBF, DNBF-E: effluent of DNBF, O3-E: effluent of ozonation, BAF-E: effluent of BAF)
Fig.3  Variations of nitrogen compounds during advanced treatment
Fig.4  Concentrations of antibiotics in each unit of advanced treatment
Fig.5  Concentrations of EDCs in each unit of advanced treatment
Fig.6  Variations of inhibition rate on V. fischeri and concentration of carbonyl compounds
Fig.7  Antibiotics removal efficiency under different ozone dosage
1 Bdour  A N, Hamdi  M R, Tarawneh  Z. Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the mediterranean region. Desalination, 2009, 237(1–3): 162–174
https://doi.org/10.1016/j.desal.2007.12.030
2 Bednarek  A, Szklarek  S, Zalewski  M. Nitrogen pollution removal from areas of intensive farming—Comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology, 2014, 14(2): 132–141
https://doi.org/10.1016/j.ecohyd.2014.01.005
3 Liu  M, Zhang  Y, Yang  M, Tian  Z, Ren  L, Zhang  S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environmental Science & Technology, 2012, 46(14): 7551–7557
https://doi.org/10.1021/es301145m pmid: 22709269
4 Zhou  L J, Ying  G G, Liu  S, Zhao  J L, Yang  B, Chen  Z F, Lai  H J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of the Total Environment, 2013, 452–453: 365–376
https://doi.org/10.1016/j.scitotenv.2013.03.010 pmid: 23538107
5 Huang  M H, Li  Y M, Gu  G W. Toxicity reduction of municipal wastewater by anaerobic-anoxic-oxic process. Biomedical and Environmental Sciences, 2010, 23(6): 481–486
https://doi.org/10.1016/S0895-3988(11)60011-1 pmid: 21315247
6 Huber  M M, Korhonen  S, Ternes  T A, von Gunten  U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research, 2005, 39(15): 3607–3617
https://doi.org/10.1016/j.watres.2005.05.040 pmid: 16061268
7 Lee  Y, von Gunten  U. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 2010, 44(2): 555–566
https://doi.org/10.1016/j.watres.2009.11.045 pmid: 20015530
8 Gilbert  Y, Le Bihan  Y, Aubry  G, Veillette  M, Duchaine  C, Lessard  P. Microbiological and molecular characterization of denitrification in biofilters treating pig manure. Bioresource Technology, 2008, 99(10): 4495–4502
https://doi.org/10.1016/j.biortech.2007.06.066 pmid: 17935979
9 Zhang  L, Zhang  S, Wang  S, Wu  C, Chen  Y, Wang  Y, Peng  Y. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source. Chemosphere, 2013, 91(5): 635–640
https://doi.org/10.1016/j.chemosphere.2012.12.071 pmid: 23411089
10 Nakada  N, Shinohara  H, Murata  A, Kiri  K, Managaki  S, Sato  N, Takada  H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41(19): 4373–4382
https://doi.org/10.1016/j.watres.2007.06.038 pmid: 17632207
11 Yang  Z D, Lv  A H, Nie  Y L, Hu  C. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions. Frontiers of Environmental Science & Engineering, 2013, 7(3): 451–456
https://doi.org/10.1007/s11783-013-0509-0
12 Oller  I, Malato  S, Sánchez-Pérez  J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 2011, 409(20): 4141–4166
https://doi.org/10.1016/j.scitotenv.2010.08.061 pmid: 20956012
13 Cui  J Q, Wang  X J, Yuan  Y L, Guo  X W, Gu  X Y, Jian  L. Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chemical Engineering Journal, 2014, 241: 184–189
https://doi.org/10.1016/j.cej.2013.09.003
14 Lotito  A M, Fratino  U, Bergna  G, Di Iaconi  C. Integrated biological and ozone treatment of printing textile wastewater. Chemical Engineering Journal, 2012, 195: 261–269
https://doi.org/10.1016/j.cej.2012.05.006
15 Rosal  R, Rodríguez  A, Perdigón-Melón  J A, Petre  A, García-Calvo  E, Gómez  M J, Agüera  A, Fernández-Alba  A R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 2010, 44(2): 578–588
https://doi.org/10.1016/j.watres.2009.07.004 pmid: 19628245
16 Lee  C O, Howe  K J, Thomson  B M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Research, 2012, 46(4): 1005–1014
https://doi.org/10.1016/j.watres.2011.11.069 pmid: 22202904
17 APHA. Standard methods for the examination for water and wastewater. 21th ed. Washington, D C: American Public Health Association, 2005
18 Li  X W, Shi  H C, Li  K X, Zhang  L, Gan  Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894
https://doi.org/10.1007/s11783-014-0735-0
19 Chang  H, Wan  Y, Naile  J, Zhang  X, Wiseman  S, Hecker  M, Lam  M H W, Giesy  J P, Jones  P D. Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. A, 2010, 1217(4): 506–513
https://doi.org/10.1016/j.chroma.2009.11.076 pmid: 20003983
20 Yu  X, Zuo  J, Tang  X, Li  R, Li  Z, Zhang  F. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. Journal of Hazardous Materials, 2014, 266: 68–74
https://doi.org/10.1016/j.jhazmat.2013.12.012 pmid: 24374566
21 Ge  S, Peng  Y, Wang  S, Lu  C, Cao  X, Zhu  Y. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource Technology, 2012, 114: 137–143
https://doi.org/10.1016/j.biortech.2012.03.016 pmid: 22503195
22 Huber  M M, Göbel  A, Joss  A, Hermann  N, Löffler  D, McArdell  C S, Ried  A, Siegrist  H, Ternes  T A, von Gunten  U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science & Technology, 2005, 39(11): 4290–4299
https://doi.org/10.1021/es048396s pmid: 15984812
23 Ternes  T A, Stüber  J, Herrmann  N, McDowell  D, Ried  A, Kampmann  M, Teiser  B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 2003, 37(8): 1976–1982
https://doi.org/10.1016/S0043-1354(02)00570-5 pmid: 12697241
24 Dodd  M C, Buffle  M O, Von Gunten  U. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environmental Science & Technology, 2006, 40(6): 1969–1977
https://doi.org/10.1021/es051369x pmid: 16570623
25 Huber  M M, Canonica  S, Park  G Y, von Gunten  U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 2003, 37(5): 1016–1024
https://doi.org/10.1021/es025896h pmid: 12666935
26 Zhang  H, Yamada  H, Tsuno  H. Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environmental Science & Technology, 2008, 42(9): 3375–3380
https://doi.org/10.1021/es702714e pmid: 18522121
27 Ho  L, Grasset  C, Hoefel  D, Dixon  M B, Leusch  F D, Newcombe  G, Saint  C P, Brookes  J D. Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Research, 2011, 45(11): 3461–3472
https://doi.org/10.1016/j.watres.2011.04.005 pmid: 21529882
28 Coleman  W E, Munch  J W, Ringhand  H P, Kaylor  W H, Mitchell  D E. Ozonation/post-chlorination of humic acid: a model for predicting drinking water disinfection by-products. Ozone Science and Engineering, 1992, 14(1): 51–69
https://doi.org/10.1080/01919519208552317
29 Mezzanotte  V, Fornaroli  R, Canobbio  S, Zoia  L, Orlandi  M. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere, 2013, 91(5): 629–634
https://doi.org/10.1016/j.chemosphere.2013.01.001 pmid: 23363621
30 Wert  E C, Rosario-Ortiz  F L, Drury  D D, Snyder  S A. Formation of oxidation byproducts from ozonation of wastewater. Water Research, 2007, 41(7): 1481–1490
https://doi.org/10.1016/j.watres.2007.01.020 pmid: 17335867
31 Tripathi  S, Pathak  V, Tripathi  D M, Tripathi  B D. Application of ozone based treatments of secondary effluents. Bioresource Technology, 2011, 102(3): 2481–2486
https://doi.org/10.1016/j.biortech.2010.11.028 pmid: 21126870
32 Reungoat  J, Escher  B I, Macova  M, Argaud  F X, Gernjak  W, Keller  J. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 2012, 46(3): 863–872
https://doi.org/10.1016/j.watres.2011.11.064 pmid: 22172561
33 Prieto-Rodríguez  L, Oller  I, Klamerth  N, Agüera  A, Rodríguez  E M, Malato  S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 2013, 47(4): 1521–1528
https://doi.org/10.1016/j.watres.2012.11.002 pmid: 23332646
34 von Gunten  U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467
https://doi.org/10.1016/S0043-1354(02)00457-8 pmid: 12600374
35 Lee  Y, Kovalova  L, McArdell  C S, von Gunten  U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research, 2014, 64: 134–148
https://doi.org/10.1016/j.watres.2014.06.027 pmid: 25046377
[1] Supplementary Material Download
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[3] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[4] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[5] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[6] Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu. Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water[J]. Front. Environ. Sci. Eng., 2021, 15(4): 68-.
[7] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[8] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[9] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[10] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[11] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[12] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[13] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[14] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[15] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed