Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 832-839    https://doi.org/10.1007/s11783-015-0778-x
RESEARCH ARTICLE
Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles
Min ZHANG1,Jian LU2,*(),Zhencheng XU3,*(),Yiliang HE1,Bo ZHANG1,Song JIN4,Brian BOMAN2
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
3. South China Institute of Environment Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
4. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA
 Download: PDF(435 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

Keywords degradation      bimetallic nanoparticles      nanoscale zero-valent iron      polybrominated diphenyl ethers     
Corresponding Author(s): Jian LU,Zhencheng XU   
Issue Date: 08 October 2015
 Cite this article:   
Min ZHANG,Jian LU,Zhencheng XU, et al. Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles[J]. Front. Environ. Sci. Eng., 2015, 9(5): 832-839.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0778-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/832
Fig.1  HPLC chromatogram of THF/water, BDE209/THF/water, and BDE209/water. The peak at 3.6 min refers to THF
Fig.2  The particle size distribution of nano-BDE209 aggregates (a) and Fe/Pd bimetallic nanoparticles (b)
Fig.3  Removal kinetics of BDE209 by microscale, nanoscale ZVI and nanoscale ZVI/Pd with initial pH of 5.0
Fig.4  Removal kinetics of BDE209 at pH 5.0, 7.0, 8.0 and 9.0 using Fe/Pd bimetallic nanoparticles
Fig.5  GC-MS chromatogram of BDE209 and the degradation intermediates at different reaction times
Fig.6  Proposed pathway for the degradation of BDE209 in pure water in the presence of Fe/Pd bimetallic nanoparticles
1 Ahn  M Y, Filley  T R, Jafvert  C T, Nies  L, Hua  I, Bezares-Cruz  J. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environmental Science & Technology, 2006, 40(1): 215–220
https://doi.org/10.1021/es051415t pmid: 16433354
2 Darnerud  P O, Eriksen  G S, Jóhannesson  T, Larsen  P B, Viluksela  M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 2001, 109(s1 Suppl 1): 49–68
https://doi.org/10.1289/ehp.01109s149 pmid: 11250805
3 Covaci  A, Voorspoels  S, de Boer  J. Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples—a review. Environment International, 2003, 29(6): 735–756
https://doi.org/10.1016/S0160-4120(03)00114-4 pmid: 12850093
4 Watkins  D J, McClean  M D, Fraser  A J, Weinberg  J, Stapleton  H M, Sjödin  A, Webster  T F. Exposure to PBDEs in the office environment: evaluating the relationships between dust, handwipes, and serum. Environmental Health Perspectives, 2011, 119(9): 1247–1252
https://doi.org/10.1289/ehp.1003271 pmid: 21715243
5 Ghosh  U, Zimmerman  J R, Luthy  R G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology, 2003, 37(10): 2209–2217
https://doi.org/10.1021/es020833k pmid: 12785527
6 Ciparis  S, Hale  R C. Bioavailability of polybrominated diphenyl ether flame retardants in biosolids and spiked sediment to the aquatic oligochaete, Lumbriculus variegatus. Environmental Toxicology and Chemistry / SETAC, 2005, 24(4): 916–925
https://doi.org/10.1897/04-179R.1 pmid: 15839567
7 Murai  S, Sonoda  N, Tsutsumi  S. Redox reaction of tetrahydrofuran hydroperoxide. Bulletin of the Chemical Society of Japan, 1963, 36(5): 527–530
https://doi.org/10.1246/bcsj.36.527
8 La Guardia  M J, Hale  R C, Harvey  E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology, 2006, 40(20): 6247–6254
https://doi.org/10.1021/es060630m pmid: 17120549
9 Fang  Z, Qiu  X, Chen  J, Qiu  X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials, 2011, 185(2−3): 958–969
https://doi.org/10.1016/j.jhazmat.2010.09.113 pmid: 21035251
10 Zhuang  Y, Ahn  S, Luthy  R G. Debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: pathways, kinetics, and reactivity. Environmental Science & Technology, 2010, 44(21): 8236–8242
https://doi.org/10.1021/es101601s pmid: 20923154
11 Wang  C B, Zhang  W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156
https://doi.org/10.1021/es970039c
12 Fang  Z, Qiu  X, Chen  J, Qiu  X. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34–41
https://doi.org/10.1016/j.desal.2010.09.003
13 Qiu  X, Fang  Z, Liang  B, Gu  F, Xu  Z. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 2011, 193(15): 70–81
https://doi.org/10.1016/j.jhazmat.2011.07.024 pmid: 21802203
14 Xie  Y, Fang  Z, Cheng  W, Tsang  P E, Zhao  D. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Science of the Total Environment, 2014, 485−486: 363–370
https://doi.org/10.1016/j.scitotenv.2014.03.039 pmid: 24742544
15 Kim  E J, Kim  J H, Kim  J H, Bokare  V, Chang  Y S. Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. Science of the Total Environment, 2014, 470−471: 1553–1557
https://doi.org/10.1016/j.scitotenv.2013.07.038 pmid: 23928371
16 Wang  X, Chen  C, Liu  H, Ma  J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Industrial & Engineering Chemistry Research, 2008, 47(22): 8645–8651
https://doi.org/10.1021/ie701762d
17 Wang  X, Chen  C, Chang  Y, Liu  H. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials, 2009, 161(2−3): 815–823
https://doi.org/10.1016/j.jhazmat.2008.04.027 pmid: 18513856
18 Bokare  A D, Chikate  R C, Rode  C V, Paknikar  K M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye orange G in aqueous solution. Applied Catalysis B: Environmental, 2008, 79(3): 270–278
https://doi.org/10.1016/j.apcatb.2007.10.033
19 Zhuang  Y, Jin  L, Luthy  R G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere, 2012, 89(4): 426–432
https://doi.org/10.1016/j.chemosphere.2012.05.078 pmid: 22732301
20 Shih  Y, Hsu  C, Su  Y. Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Separation and Purification Technology, 2011, 76(3): 268–274
https://doi.org/10.1016/j.seppur.2010.10.015
21 Chen  X, Clark II  C J. Modeling the effects of methanol on iron dechlorination of a complex chlorinated NAPL. Journal of Hazardous Materials, 2009, 164(2−3): 565–570
https://doi.org/10.1016/j.jhazmat.2008.08.055 pmid: 18848392
22 Fang  Z Q, Qiu  X H, Chen  J H, Qiu  X Q. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34–41
https://doi.org/10.1016/j.desal.2010.09.003
23 Wang  Y, Li  A, Liu  H, Zhang  Q, Ma  W, Song  W, Jiang  G. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Journal of Chromatography A, 2006, 1103(2): 314–328
https://doi.org/10.1016/j.chroma.2005.11.034 pmid: 16352309
24 Bezares-Cruz  J, Jafvert  C T, Hua  I. Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environmental Science & Technology, 2004, 38(15): 4149–4156
https://doi.org/10.1021/es049608o pmid: 15352454
25 Gerecke  A C, Hartmann  P C, Heeb  N V, Kohler  H P, Giger  W, Schmid  P, Zennegg  M, Kohler  M. Anaerobic degradation of decabromodiphenyl ether. Environmental Science & Technology, 2005, 39(4): 1078–1083
https://doi.org/10.1021/es048634j pmid: 15773480
26 Xu  H Y, Zou  J W, Yu  Q S, Wang  Y H, Zhang  J Y, Jin  H X. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere, 2007, 66(10): 1998–2010
https://doi.org/10.1016/j.chemosphere.2006.07.072 pmid: 16962642
27 Li  A, Tai  C, Zhao  Z, Wang  Y, Zhang  Q, Jiang  G, Hu  J. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology, 2007, 41(19): 6841–6846
https://doi.org/10.1021/es070769c pmid: 17969704
28 Shih  Y H, Tai  Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 2010, 78(10): 1200–1206
https://doi.org/10.1016/j.chemosphere.2009.12.061 pmid: 20117822
29 Grittini  C, Malcomson  M, Fernando  Q, Korte  N. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 1995, 29(11): 2898–2900
https://doi.org/10.1021/es00011a029 pmid: 22206541
30 Agarwal  S, Al-Abed  S R, Dionysiou  D D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environmental Science & Technology, 2007, 41(10): 3722–3727
https://doi.org/10.1021/es062886y pmid: 17547203
31 Matheson  L J, Tratnyek  P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 1994, 28(12): 2045–2053
https://doi.org/10.1021/es00061a012 pmid: 22191743
32 Doong  R A, Wu  S C. Reductive dechlorination of chlorinated hydrocarbons in solutions containing ferrous and sulfide ions. Chemosphere, 1992, 24(8): 1063–1075
33 Klečka  G M, Gonsior  S J. Reductive dechlorination of chlorinated methanes and ethanes by reduced iron (II) porphyrins. Chemosphere, 1984, 13(3): 391–402
https://doi.org/10.1016/0045-6535(84)90097-3
34 O’carroll  D, Sleep  B, Krol  M, Boparai  H, Kocur  C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
https://doi.org/10.1016/j.advwatres.2012.02.005
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[3] Xinzheng Li, Zhiming Li, Zhihui Xing, Zhimin Song, Bei Ye, Zhengming Wang, Qianyuan Wu. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front. Environ. Sci. Eng., 2021, 15(5): 85-.
[4] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[5] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[6] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[7] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[8] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[9] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[10] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[11] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[12] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[13] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[14] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed