Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 840-849    https://doi.org/10.1007/s11783-015-0781-2
RESEARCH ARTICLE
Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin
Jialu SHI,Shengnan YI,Chao LONG(),Aimin LI
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
 Download: PDF(1120 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, nanoscale zero-valent iron (NZVI) were immobilized within a chelating resin (DOW 3N). To investigate the effect of Fe loading on NZVI reactivity, three NZVI-resin composites with different Fe loading were obtained by preparing Fe(III) solution in 0, 30 and 70% (v/v) ethanol aqueous, respectively; the bromate was used as a model contaminant. TEM reveals that increasing the Fe loading resulted in much larger size and poor dispersion of nanoscale iron particles. The results indicated that the removal efficiency of bromate and the rate constant (Kobs) were decreased with increasing the Fe loading. For the NZVI-resin composite with lower Fe loading, the removal efficiency of bromate declined more significantly with the increase of DO concentrations. Under acidic conditions, decreasing the pH value had the most significant influence on NZVI-R3 with highest Fe loading for bromate removal; however, under alkaline conditions, the most significant influence of pH was on NZVI-R1 with lowest Fe loading. The effects of co-existing anions NO3, PO43 and HCO3 were also investigated. All of the co-existing anions showed the inhibition to bromate reduction.

Keywords nanoscale zero valent iron      loading quantity      reduction      chelating resin      bromated     
Corresponding Author(s): Chao LONG   
Just Accepted Date: 05 March 2015   Online First Date: 30 March 2015    Issue Date: 08 October 2015
 Cite this article:   
Jialu SHI,Shengnan YI,Chao LONG, et al. Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin[J]. Front. Environ. Sci. Eng., 2015, 9(5): 840-849.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0781-2
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/840
Fig.1  TEM images and size distribution of NZVI nanoparticles: (a) NZVI-R1, (b) NZVI-R2 and (c) NZVI-R3
Fig.2  XPS Fe 2p spectra of (a) NZVI-R1, (b) NZVI-R2 and (c) NZVI-R3
Fig.3  Bromate removal by NZVI-R1 (■□), NZVI-R2 (●○), NZVI-R3 (▲△). Filled symbols denote bromate, and open symbols denote bromide. (Iron dosage= 29.15 mg·L−1, B r O 3 = 1 mg·L−1, pH= 6.1, DO= 9.0±0.1 mg·L−1 and rotation speed= 200 r·min−1)
Fig.4  Effect of dissolved oxygen on bromate removal by NZVI-resin composites under various DO concentrations: (a) NZVI-R1, (b) NZVI-R2 and (c) NZVI-R3 (iron dosage= 29.15 mg·L−1, B r O 3 = 1 mg·L−1, pH= 6.1 and rotation speed= 200 r·min−1)
Fig.5  The linear fitting results of Kobs under different DO concentration
Fig.6  Effect of pH on bromate removal by NZVI-resin composites under various initial pH: (a) NZVI-R1, (b) NZVI-R2 and (c) NZVI-R3 (iron dosage= 29.15 mg·L−1, B r O 3 = 1 mg·L−1, DO= 9.0±0.1 mg·L−1 and rotation speed= 200 r·min−1)
Fig.7  Reaction rate constants of bromate removal by NZVI-resin composites under various initial pH values
Fig.8  Effect of co-existing anions on bromate removal by NZVI-resin composites: (a) NZVI-R1, (b) NZVI-R2 and (c) NZVI-R3 (iron dosage= 29.15 mg·L−1, B r O 3 = 1 mg·L−1, pH= 6.1, DO= 9.0±0.1 mg·L−1 and rotation speed= 200 r·min−1)
1 Liu  Y, Lowry  G V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 2006, 40(19): 6085–6090
https://doi.org/10.1021/es060685o pmid: 17051804
2 Liu  Y, Majetich  S A, Tilton  R D, Sholl  D S, Lowry  G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345
https://doi.org/10.1021/es049195r pmid: 15787375
3 Shu  H Y, Chang  M C, Chen  C C, Chen  P E. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 2010, 184(1−3): 499–505
https://doi.org/10.1016/j.jhazmat.2010.08.064 pmid: 20833471
4 Lowry  G V, Johnson  K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004, 38(19): 5208–5216
https://doi.org/10.1021/es049835q pmid: 15506219
5 Zhu  S N, Liu  G H, Ye  Z, Zhao  Q, Xu  Y. Reduction of dinitrotoluene sulfonates in TNT red water using nanoscale zerovalent iron particles. Environmental Science and Pollution Research International, 2012, 19(6): 2372–2380
https://doi.org/10.1007/s11356-012-0749-8 pmid: 22270756
6 Zhang  X, Lin  S, Lu  X Q, Chen  Z L. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 2010, 163(3): 243–248
https://doi.org/10.1016/j.cej.2010.07.056
7 Li  X Q, Zhang  W X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 2006, 22(10): 4638–4642
https://doi.org/10.1021/la060057k pmid: 16649775
8 Uezuem  C, Shahwan  T, Eroglu  A E, Hallam  K R, Scott  T B, Lieberwirth  I. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 2009, 43(2): 172–181
https://doi.org/10.1016/j.clay.2008.07.030
9 Shi  L N, Zhou  Y, Chen  Z, Megharaj  M, Naidu  R. Simultaneous adsorption and degradation of Zn2+ and Cu<?Pub Caret?>2+ from wastewaters using nanoscale zero-valent iron impregnated with clays. Environmental Science and Pollution Research International, 2013, 20(6): 3639–3648
https://doi.org/10.1007/s11356-012-1272-7 pmid: 23114838
10 Cao  J S, Elliott  D, Zhang  W X. Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research, 2005, 7(4−5): 499–506
https://doi.org/10.1007/s11051-005-4412-x
11 Xiong  Z, Zhao  D, Pan  G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research, 2007, 41(15): 3497–3505
https://doi.org/10.1016/j.watres.2007.05.049 pmid: 17597179
12 Hwang  Y H, Kim  D G, Shin  H S. Mechanism study of nitrate reduction by nano zero-valent iron. Journal of Hazardous Materials, 2011, 185(2−3): 1513–1521
https://doi.org/10.1016/j.jhazmat.2010.10.078 pmid: 21093984
13 Sohn  K, Kang  S W, Ahn  S, Woo  M, Yang  S K. Fe0 nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environmental Science & Technology, 2006, 40(17): 5514–5519
https://doi.org/10.1021/es0525758 pmid: 16999133
14 Westerhoff  P. Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0). Journal of Environmental Engineering, 2003, 129(1): 10–16
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:1(10)
15 Xie  L, Shang  C. The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere, 2007, 66(9): 1652–1659
https://doi.org/10.1016/j.chemosphere.2006.07.048 pmid: 16942788
16 Wu  X, Yang  Q, Xu  D, Zhong  Y, Luo  K, Li  X, Chen  H, Zeng  G. Simultaneous adsorption/reduction of bromate by nanoscale zero-valent iron supported on modified activated carbon. Industrial & Engineering Chemistry Research, 2013, 52(35): 12574–12581
https://doi.org/10.1021/ie4009524
17 Wang  Q, Snyder  S, Kim  J, Choi  H. Aqueous ethanol modified nanoscale zero-valent iron in bromate reduction: synthesis, characterization, and reactivity. Environmental Science & Technology, 2009, 43(9): 3292–3299
https://doi.org/10.1021/es803540b pmid: 19534149
18 Alowitz  M J, Scherer  M M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology, 2002, 36(3): 299–306
https://doi.org/10.1021/es011000h pmid: 11871541
19 Hwang  Y H, Kim  D G, Shin  H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero-valent iron. Applied Catalysis B: Environmental, 2011, 105(1−2): 144–150
https://doi.org/10.1016/j.apcatb.2011.04.005
20 He  F, Zhao  D. Manipulating the size and dispersibility of zero-valent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 2007, 41(17): 6216–6221
https://doi.org/10.1021/es0705543 pmid: 17937305
21 Zhu  H, Jia  Y, Wu  X, Wang  H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 2009, 172(2−3): 1591–1596
https://doi.org/10.1016/j.jhazmat.2009.08.031 pmid: 19733972
22 Choi  H, Al-Abed  S R. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron. Journal of Hazardous Materials, 2010, 179(1−3): 869–874
https://doi.org/10.1016/j.jhazmat.2010.03.085 pmid: 20388583
23 Zhang  Y, Li  Y, Li  J, Hu  L, Zheng  X. Enhanced removal of nitrate by a novel composite: nanoscale zero-valent iron supported on pillared clay. Chemical Engineering Journal, 2011, 171(2): 526–531
https://doi.org/10.1016/j.cej.2011.04.022
24 Wang  W, Zhou  M H, Mao  Q O, Yue  J J, Wang  X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catalysis Communications, 2010, 11(11): 937–941
https://doi.org/10.1016/j.catcom.2010.04.004
25 Ponder  S M, Darab  J G, Bucher  J, Caulder  D, Craig  I, Davis  L, Edelstein  N, Lukens  W, Nitsche  H, Rao  L F, Shuh  D K, Mallouk  T E. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 2001, 13(2): 479–486
https://doi.org/10.1021/cm000288r
26 Jiang  Z, Lv  L, Zhang  W, Du  Q, Pan  B, Yang  L, Zhang  Q. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Research, 2011, 45(6): 2191–2198
https://doi.org/10.1016/j.watres.2011.01.005 pmid: 21316071
27 Shi  J, Yi  S, He  H, Long  C, Li  A. Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3−. Chemical Engineering Journal, 2013, 230: 166–171
https://doi.org/10.1016/j.cej.2013.06.088
28 Moore  M M, Chen  T. Mutagenicity of bromate: implications for cancer risk assessment. Toxicology, 2006, 221(2−3): 190–196
https://doi.org/10.1016/j.tox.2005.12.018 pmid: 16460860
29 Diniz  C V, Ciminelli  V S T, Doyle  F M. The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions. Hydrometallurgy, 2005, 78(3−4): 147–155
https://doi.org/10.1016/j.hydromet.2004.12.007
30 Diniz  C V, Doyle  F M, Ciminelli  V S T. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology, 2002, 37: 3169–3185
https://doi.org/10.1081/SS-120006155
31 Wang  W, Jin  Z H, Li  T L, Zhang  H, Gao  S. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere, 2006, 65(8): 1396–1404
https://doi.org/10.1016/j.chemosphere.2006.03.075 pmid: 16707148
32 Jia  H, Gu  C, Boyd  S A, Teppen  B J, Johnston  C T, Song  C, Li  H. Comparison of reactivity of nanoscaled zero-valent iron formed on clay surfaces. Soil Science Society of America Journal, 2011, 75(2): 357–364
https://doi.org/10.2136/sssaj2010.0080nps
33 Tan  B J, Klabunde  K J, Sherwood  P M A. X-ray photoelectron-spectroscopy studies of solvated metal atom dispersed catalysts.Monometallic iron and bimetallic iron cobal particles on alumina. Chemistry of Materials, 1990, 2(2): 186–191
https://doi.org/10.1021/cm00008a021
34 Liou  Y H, Lo  S L, Kuan  W H, Lin  C J, Weng  S C. Effect of precursor concentration on the characteristics of nanoscale zero-valent iron and its reactivity of nitrate. Water Research, 2006, 40(13): 2485–2492
https://doi.org/10.1016/j.watres.2006.04.048 pmid: 16814362
35 Yin  W, Wu  J, Li  P, Wang  X, Zhu  N, Wu  P, Yang  B. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: the effects of pH, iron dosage, oxygen and common dissolved anions. Chemical Engineering Journal, 2012, 184: 198–204
https://doi.org/10.1016/j.cej.2012.01.030
36 Huang  Y H, Zhang  T C. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research, 2005, 39(9): 1751–1760
https://doi.org/10.1016/j.watres.2005.03.002 pmid: 15899273
37 Devlin  J F, Allin  K O. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology, 2005, 39(6): 1868–1874
https://doi.org/10.1021/es040413q pmid: 15819249
38 Agrawal  A, Ferguson  W J, Gardner  B O, Christ  J A, Bandstra  J Z, Tratnyek  P G. Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environmental Science & Technology, 2002, 36(20): 4326–4333
https://doi.org/10.1021/es025562s pmid: 12387405
39 Reardon  E J. Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environmental Science & Technology, 1995, 29(12): 2936–2945
https://doi.org/10.1021/es00012a008 pmid: 22148199
40 Kober  R, Schlicker  O, Ebert  M, Dahmke  A. Degradation of chlorinated ethylenes by Fe0: inhibition processes and mineral precipitation. Environmental Geology, 2002, 41: 644–652
https://doi.org/10.1007/s00254-001-0443-5
41 Phillips  D H, Gu  B, Watson  D B, Roh  Y, Liang  L, Lee  S Y. Performance evaluation of a zero-valent iron reactive barrier: mineralogical characteristics. Environmental Science & Technology, 2000, 34(19): 4169–4176
https://doi.org/10.1021/es001005z
[1] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[2] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[3] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[4] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[5] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[6] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[7] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[8] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[9] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[10] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[11] Jing Peng, Ke Wang, Xiangbo Yin, Xiaoqing Yin, Mengfei Du, Yingzhi Gao, Philip Antwi, Nanqi Ren, Aijie Wang. Trophic mode and organics metabolic characteristic of fungal community in swine manure composting[J]. Front. Environ. Sci. Eng., 2019, 13(6): 93-.
[12] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[13] Dian Ding, Jia Xing, Shuxiao Wang, Xing Chang, Jiming Hao. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017[J]. Front. Environ. Sci. Eng., 2019, 13(5): 76-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Kaikai Zhang, Peng Sun, Yanrong Zhang. Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar[J]. Front. Environ. Sci. Eng., 2019, 13(2): 22-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed