Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 897-904    https://doi.org/10.1007/s11783-015-0782-1
RESEARCH ARTICLE
Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage
Yali CHEN,Lu XIONG,Weikang WANG,Xing ZHANG,Hanqing YU()
CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
 Download: PDF(849 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pollution caused by toxic nitrobenzene has been a widespread environmental concern. Selective reduction of nitrobenzene to aniline is beneficial to further efficient and cost-effective biologic treatment. Electrochemical reduction is a promising method and Cu-based catalysts have been found to be an efficient cathode material for this purpose. In this work, Cu catalysts with different morphologies were fabricated on Ti plate using a facile electrodepositon method via tuning the applied voltage. The dendritic nano-structured Cu catalysts obtained at high applied voltages exhibited an excellent efficiency and selectivity toward the reduction of nitrobenzene to aniline. Effects of the working potential and initial nitrobenzene concentration on the selective reduction of nitrobenzene to aniline using the Cu/Ti electrode were investigated. A high rate constant of 0.0251 min−1 and 97.1% aniline selectivity were achieved. The fabricated nano-structured Cu catalysts also exhibited good stability. This work provides a facile way to prepare highly efficient, cost-effective, and stable nano-structured electrocatalysts for pollutant reduction.

Keywords nitrobenzene      nano-structured Cu      electro-reduction      voltage-dependent electrodeposition      high selectivity      high stability     
Corresponding Author(s): Hanqing YU   
Just Accepted Date: 05 March 2015   Online First Date: 30 March 2015    Issue Date: 08 October 2015
 Cite this article:   
Yali CHEN,Lu XIONG,Weikang WANG, et al. Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage[J]. Front. Environ. Sci. Eng., 2015, 9(5): 897-904.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0782-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/897
Fig.1  
Fig.2  SEM images of Cu/Ti electrodes at the applied voltage of −0.9 V (a) and (b), −1.2 V (c) and (d), −1.5 V (e) and (f), −1.8 V (g) and (h)
Fig.3  XRD patterns of the synthesized Cu/Ti catalysts
Fig.4  NB reduction performance on different Cu/Ti electrodes. (a) Performance of the different electrodes for NB selectivity reduction to AN; and (b) Pseudo-first-order model for NB reduction on different Cu/Ti electrodes. Working potential for electrocatalytic recuction of NB: −0.8 V, catholyte: 195 (±10) mg·L−1 NB and 10 mmol·L−1 Na2SO4 background electrolyte, anolyte: 10 mmol·L−1 Na2SO4
electrode ka) /min−1 R2 b)
Cu/Ti-1 0.0048 0.9984
Cu/Ti-2 0.0052 0.9920
Cu/Ti-3 0.0138 0.9918
Cu/Ti-4 0.0140 0.9954
Tab.1  Parameters obtained from the pseudo-first-order kinetic model
potential/V ka)/min−1 R2 b)
−0.7 0.0072 0.9911
−0.8 0.0144 0.9909
−0.9 0.0188 0.9997
−1.0 0.0215 0.9974
−1.1 0.0220 0.9954
Tab.2  Effect of working potential on the kinetic rate constant for NB reduction
Fig.5  Effect of working potential on NB reduction. (a) NB removal efficiency on different working potentials, (b) AN yield on different working potentials. Catholyte: 181.5(±11.5) mg·L−1 NB and 10 mmol·L−1 Na2SO4 background electrolyte, anolyte: 10 mmol·L−1 Na2SO4
Fig.6  Effect of the initial concentration of NB on its reduction on the Cu/Ti-3 electrode. (a) NB removal; and (b) AN formation. Working potential for electrocatalytic reduction of NB: −0.9 V, catholyte: selected concentration of NB and 10 mmol·L−1 Na2SO4 background electrolyte, anolyte: 10 mmol·L−1 Na2SO4
Fig.7  Repeated NB reduction on the Cu/Ti-3 electrode. Working potential for electrocatalytic recuction of NB: −0.9 V, catholyte: 18 (±2) mg·L−1 NB and 10 mmol·L−1 Na2SO4 background electrolyte, anolyte: 10 mmol·L−1 Na2SO4
1 Wang  A J, Cheng  H Y, Liang  B, Ren  N Q, Cui  D, Lin  N, Kim  B H, Rabaey  K. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environmental Science & Technology, 2011, 45(23): 10186–10193
https://doi.org/10.1021/es202356w pmid: 21985580
2 Pan  J, Guan  B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. Journal of Hazardous Materials, 2010, 183(1−3): 341–346
https://doi.org/10.1016/j.jhazmat.2010.07.030 pmid: 20685039
3 Rodriguez  M, Timokhin  V, Michl  F, Contreras  S, Gimenez  J, Esplugas  S. The influence of different irradiation sources on the treatment of nitrobenzene. Catalysis Today, 2002, 76(2−4): 291–300
https://doi.org/10.1016/S0920-5861(02)00227-4
4 Beauchamp  R O Jr, Irons  R D, Rickert  D E, Couch  D B, Hamm  T E Jr. A critical review of the literature on nitrobenzene toxicity. Critical Reviews in Toxicology, 1982, 11(1): 33–84
https://doi.org/10.3109/10408448209089848 pmid: 6761067
5 Meng  X, Cheng  H, Akiyama  Y, Hao  Y, Qiao  W, Yu  Y, Zhao  F, Fujita  S, Arai  M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. Journal of Catalysis, 2009, 264(1): 1–10
https://doi.org/10.1016/j.jcat.2009.03.008
6 Zhu  L, Lv  M, Dai  X, Xu  X, Qi  H, Yu  Y. Reaction kinetics of the degradation of chloroanilines and aniline by aerobic granule. Biochemical Engineering Journal, 2012, 68(15): 215–220
https://doi.org/10.1016/j.bej.2012.07.015
7 Brillas  E, Mur  E, Sauleda  R, Sànchez  L, Peral  J, Domènech  X, Casado  J. Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 1998, 16(1): 31–42
https://doi.org/10.1016/S0926-3373(97)00059-3
8 Li  Y P, Cao  H B, Liu  C M, Zhang  Y. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. Journal of Hazardous Materials, 2007, 148(1−2): 158–163
https://doi.org/10.1016/j.jhazmat.2007.02.021 pmid: 17374445
9 Sheng  X, Wouters  B, Breugelmans  T, Hubin  A, Vankelecom  I F J, Pescarmona  P P. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Applied Catalysis B: Environmental, 2014, 147(0): 330–339
https://doi.org/10.1016/j.apcatb.2013.09.006
10 Jiang  J, Zhai  R, Bao  X. Electrocatalytic properties of Cu-Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene. Journal of Alloys and Compounds, 2003, 354(1−2): 248–258
https://doi.org/10.1016/S0925-8388(02)01359-2
11 Becker  A R, Sternson  L A. Oxidation of phenylhydroxylamine in aqueous solution: A model for study of the carcinogenic effect of primary aromatic amines. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(4I): 2003–2007
12 Kokkinidis  G, Jüttner  K. The electrocatalytic influence of underpotential lead adsorbates on the reduction of nitrobenzene and nitrosobenzene on silver single crystal surfaces in methanolic solutions. Electrochimica Acta, 1981, 26(8): 971–977
https://doi.org/10.1016/0013-4686(81)85065-7
13 Grošková  D, Štolcová  M, Hronec  M. Reaction of <?Pub Caret?>N-phenylhydroxylamine in the presence of clay catalysts. Catalysis Letters, 2000, 69(1/2): 113–116
https://doi.org/10.1023/A:1019097217875
14 Tanaka  A, Nishino  Y, Sakaguchi  S, Yoshikawa  T, Imamura  K, Hashimoto  K, Kominami  H. Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chemical Communications (Cambridge, England), 2013, 49(25): 2551–2553
https://doi.org/10.1039/c3cc39096a pmid: 23422929
15 Luan  F, Burgos  W D, Xie  L, Zhou  Q. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32. Environmental Science & Technology, 2010, 44(1): 184–190
https://doi.org/10.1021/es901585z pmid: 19957913
16 Wang  J, Lu  H, Zhou  Y, Song  Y, Liu  G, Feng  Y. Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. Journal of Hazardous Materials, 2013, 252−253(0): 227–232
https://doi.org/10.1016/j.jhazmat.2013.02.040 pmid: 23542318
17 Huang  X, Li  Y, Li  Y, Zhou  H, Duan  X, Huang  Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Letters, 2012, 12(8): 4265–4270
https://doi.org/10.1021/nl301931m pmid: 22764838
18 Gao  Y, Ma  D, Wang  C, Guan  J, Bao  X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications (Cambridge, England), 2011, 47(8): 2432–2434
https://doi.org/10.1039/c0cc04420b pmid: 21170437
19 Tada  H, Ishida  T, Takao  A, Ito  S. Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir, 2004, 20(19): 7898–7900
https://doi.org/10.1021/la049167m pmid: 15350049
20 Maldotti  A, Andreotti  L, Molinari  A, Tollari  S, Penoni  A, Cenini  S. Photochemical and photocatalytic reduction of nitrobenzene in the presence of cyclohexene. Journal of Photochemistry and Photobiology A Chemistry, 2000, 133(1−2): 129–133
https://doi.org/10.1016/S1010-6030(00)00212-4
21 Zhang  S J, Jiang  H, Li  M J, Yu  H Q, Yin  H, Li  Q R. Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions. Environmental Science & Technology, 2007, 41(6): 1977–1982
https://doi.org/10.1021/es062031l pmid: 17410793
22 Sun  Z, Wei  X, Hu  X, Wang  K, Shen  H. Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414(20): 314–319
https://doi.org/10.1016/j.colsurfa.2012.08.035
23 Zhang  Y, Zeng  L, Bo  X, Wang  H, Guo  L. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites. Analytica Chimica Acta, 2012, 752: 45–52
https://doi.org/10.1016/j.aca.2012.09.040 pmid: 23101651
24 Chen  Z, Wang  Z, Wu  D, Ma  L. Electrochemical study of nitrobenzene reduction on galvanically replaced nanoscale Fe/Au particles. Journal of Hazardous Materials, 2011, 197(0): 424–429
https://doi.org/10.1016/j.jhazmat.2011.09.054 pmid: 21982533
25 Shindo  H, Nishihara  C. Detection of nitrosobenzene as an intermediate in the electrochemical reduction of nitrobenzene on Ag in a flow reactor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263(2): 415–420
https://doi.org/10.1016/0022-0728(89)85108-3
26 Yuan  X Z, Ma  Z F, Jiang  Q Z, Wu  W S. Cogeneration of cyclohexylamine and electrical power using PEM fuel cell reactor. Electrochemistry Communications, 2001, 3(11): 599–602
https://doi.org/10.1016/S1388-2481(01)00226-0
27 Cyr  A, Huot  P, Marcoux  J F, Belot  G, Laviron  E, Lessard  J. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes. Electrochimica Acta, 1989, 34(3): 439–445
https://doi.org/10.1016/0013-4686(89)87023-9
28 Qiu  R, Cha  H G, Noh  H B, Shim  Y B, Zhang  X L, Qiao  R, Zhang  D, Kim  Y I, Pal  U, Kang  Y S. Preparation of dendritic copper nanostructures and their characterization for electroreduction. Journal of Physical Chemistry C, 2009, 113(36): 15891–15896
https://doi.org/10.1021/jp904222b
29 Sun  M, Reible  D D, Lowry  G V, Gregory  K B. Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environmental Science & Technology, 2012, 46(11): 6174–6181
https://doi.org/10.1021/es300048y pmid: 22571797
30 Yang  B, Yu  G, Huang  J. Electrocatalytic hydrodechlorination of 2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode. Environmental Science & Technology, 2007, 41(21): 7503–7508
https://doi.org/10.1021/es071168o pmid: 18044533
31 Li  A, Zhao  X, Hou  Y, Liu  H, Wu  L, Qu  J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Applied Catalysis B: Environmental, 2012, 111−112(0): 628–635
https://doi.org/10.1016/j.apcatb.2011.11.016
32 Zhu  K, Baig  S A, Xu  J, Sheng  T, Xu  X. Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode. Electrochimica Acta, 2012, 69(0): 389–396 doi:10.1016/j.electacta.2012.03.038
[1] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[2] Yongsheng Zhao, Lin Lin, Mei Hong. Nitrobenzene contamination of groundwater in a petrochemical industry site[J]. Front. Environ. Sci. Eng., 2019, 13(2): 29-.
[3] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[4] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[5] Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
[6] Honghu ZENG, Lanjing LU, Meina LIANG, Jie LIU, Yanghong LI. Degradation of trace nitrobenzene in water by microwave-enhanced H2O2-based process[J]. Front Envir Sci Eng, 2012, 6(4): 477-483.
[7] Jianguo LIU, Xiaoqin NIE, Xianwei ZENG, Zhaoji SU. Cement-based solidification/stabilization of contaminated soils by nitrobenzene[J]. Front Envir Sci Eng, 2012, 6(3): 437-443.
[8] ZHAO Lei, MA Jun, LIU Zhengqian, YANG Yixin, SUN Zhizhong. Experimental study on oxidative decomposition of nitrobenzene in aqueous solution by honeycomb ceramic-catalyzed ozonation[J]. Front.Environ.Sci.Eng., 2008, 2(1): 44-50.
[9] FAN Jinhong, XU Wenying, GAO Tingyao, MA Luming. Stability analysis of alkaline nitrobenzene-containing wastewater by a catalyzed Fe-Cu treatment process[J]. Front.Environ.Sci.Eng., 2007, 1(4): 504-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed