Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 352-361    https://doi.org/10.1007/s11783-015-0783-0
RESEARCH ARTICLE
Efficient removal of heavy metals from electroplating wastewater using polymer ligands
Md. Lutfor RAHMAN(),Shaheen M. SARKAR,Mashitah Mohd YUSOFF
Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Malaysia
 Download: PDF(883 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.

Keywords heavy metals      adsorption      wastewater      chelating ligands      plating industry     
Corresponding Author(s): Md. Lutfor RAHMAN   
Online First Date: 17 April 2015    Issue Date: 01 February 2016
 Cite this article:   
Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0783-0
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/352
wastewater metal ions concentration/(mg?L−1)
Cu Co Cr Mn Fe Ni Zn Pb Cd
Cr-wastewater 0.105 0.163 24.53 0.252 0.440 3.380 7.528 1.188 0.084
CN-wastewater 5.191 0.290 2.113 0.569 6.722 35.56 75.86 0.013 0.041
H/OH-wastewater 0.621 0.066 0.240 0.071 0.870 2.970 4.810 0.025 0.071
Tab.1  Toxic metals concentration in various wastewaters at pH 4
Fig.1  H stands as poly(hydroxamic acid) and A stands as poly(amidoxime) ligands [12]
Fig.2  SEM micrographs of (a) acacia cellulose, (b) poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose and (c) poly(hydroxamic acid)-poly(amidoxime) chelating ligands
Fig.3  Toxic metal ions adsorption capacity by the ligands as a function of pH. Batch conditions: 0.2000 g of polymer ligands, 20 mL distilled water, 10 mL of 0.1 mmol?L−1 sodium acetate buffer, 10 mL of 0.1 mmol?L−1 metal ions solution and shaken 6 h
Fig.4  Rate of exchange of toxic metal ions by the ligands at pH 6
Fig.5  Breakthrough curves for a series of synthetic metal ions adsorption by polymer ligands (PHA-PA). Column conditions: column bed 15 cm; conditioned at pH 4, diameter of glass column 10 mm, flow rate of 5.0 mL?min−1
solute metals m1/(mg?cm−2) m2/(mg?cm−2) m1 m2/(mg?cm−2) F/(mg?cm−2?min−1) tx/min tδ/min tf/min f δ/cm saturation/%
Cu 7.58 1.00 6.58 0.05 151.6 131.6 7.02 0.946 13.4 95.23
Fe 7.37 0.99 6.38 0.05 147.5 127.6 7.26 0.943 13.4 94.91
Cr 7.19 0.91 6.28 0.05 143.9 125.7 5.80 0.953 13.4 95.87
Ni 7.07 0.88 6.19 0.05 141.4 123.8 5.39 0.956 13.5 96.10
Zn 6.78 0.83 5.94 0.05 135.6 118.9 4.97 0.958 13.6 96.25
Co 6.52 0.78 5.74 0.05 130.5 114.9 4.26 0.962 13.5 96.68
Cd 6.00 0.70 5.30 0.05 120.0 106.0 3.52 0.966 13.6 97.02
Mn 5.72 0.64 5.07 0.05 114.4 101.4 2.92 0.971 13.4 97.42
Pb 5.54 0.61 4.92 0.05 110.8 98.4 2.62 0.973 13.4 97.62
Tab.2  Evaluation and operational parameters for fixed bed column by synthetic metal ions
Fig.6  Toxic metal removal from chromium, cyanide and acid-alkali wastewater by PHA-PA ligands; Column condition: Column bed 15 cm; conditioned at pH 4; diameter of glass column 10 mm; flow rate 5.0 mL?min−1
adsorbent materials modifier metal ions Adsorption/ (mg?g−1) Ref.
cellulose NaOH (carboxyl) Cu2+ 70.50 Liu et al. [24]
cellulose Glycidyl methacrylate Cu2+ 68.50 O’Connell et al. [25]
cellulose Mercaptobenzothiozole Hg2+ 204.08 Santhana et al. [26]
mesoporous silica monoliths MBHB Cu2+ 145.98 Awual et al. [27]
mesoporous silica monoliths HMBA Cu2+ 182.39 Awual et al. [28]
mesoporous silica monoliths HMBA Pd2+ 172.53 Awual et al. [28]
mesoporous silica DPDB Pb2+ 195.31 Awual et al. [29]
mesoporous silica TPDP Pb2+ 200.80 Awual et al. [30]
mesoporous silica monoliths HMBA Co2+ 189.37 Awual et al. [31]
organic-inorganic conjugate TSNT Co2+ 205.33 Awual et al. [32]
organic-inorganic conjugate TSNT Cu2+ 199.20 Awual et al. [32]
acasia Cellulose hydroxamic acid-amidoxime Cu2+ 177.91 This study
acasia Cellulose hydroxamic acid-amidoxime Fe3+ 168.38 This study
Tab.3  Adsorption capacities of some metal ions reported in the literature [2432]
1 O’Connell  D W, Birkinshaw  C, O’Dwyer  T F. Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology, 2008, 99(15): 6709–6724
https://doi.org/10.1016/j.biortech.2008.01.036 pmid: 18334292
2 Klemm  D, Schmauder  H P, Heinze  T. Cellulose, Polysaccharides II. Poly-saccharides from Eukaryotes. In: Vandamme  S, Steinbuchel  E J, eds. Weinheim: Wiley VCH, 2002, 275–320
3 Dahou  W, Ghemati  D, Oudia  A, Aliouche  D. Preparation and biological characterization of cellulose graft copolymers. Biochemical Engineering Journal, 2010, 48(2): 187–194
https://doi.org/10.1016/j.bej.2009.10.006
4 Lutfor  M R, Mashitah  M Y. Synthesis of poly(hydroxamic acid)-poly(amidoxime) chelating ligands for removal of metals from industrial wastewater. E-Journal of Chemistry, 2011, 8(3): 1038–1043
https://doi.org/10.1155/2011/645628
5 Kadirvelu  K, Thamaraiselvi  K, Namasivayam  C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 2001, 76(1): 63–65
https://doi.org/10.1016/S0960-8524(00)00072-9 pmid: 11315812
6 Wilkins  E, Yang  Q. Comparison of the heavy metal removal efficiency of bio-ligands and granular activated carbon. Journal of Environmental Science and Health, Part A., 1996, 31: 2111–2128
7 Vivek Narayanan  N, Ganesan  M. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. Journal of Hazardous Materials, 2009, 161(1): 575–580
https://doi.org/10.1016/j.jhazmat.2008.03.113 pmid: 18485589
8 Mrozowski  J, Zielinski  J. Studies of zinc and lead removal from industrial wastes by electrocoagulation. Environmental Protection Engineering, 1983, 9: 77–85
9 Farka  J, Mitchell  G D. An electrochemical treatment process for heavy metal recovery wastewaters. AIChE Symposium Series, 1985, 243: 57–66
10 Ratna Kumar  P, Chaudhari  S, Khilar  K C, Mahajan  S P. Removal of arsenic from water by electrocoagulation. Chemosphere, 2004, 55(9): 1245–1252
https://doi.org/10.1016/j.chemosphere.2003.12.025 pmid: 15081765
11 Kyzas  G Z, Kostoglou  M, Lazaridis  N K, Bikiaris  D N N. N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. Journal of Hazardous Materials, 2013, 244−245: 29–38
https://doi.org/10.1016/j.jhazmat.2012.11.049 pmid: 23270947
12 Simon  Y W S, Lutfor  M R, Arshad  S E, Loumie  S N, Baba  M. Synthesis and characterization of poly(hydroxamic acid)-poly(amidoxime) chelating ligands from polymer-grafted acacia cellulose. Journal of Applied Polymer Science, 2011, 124: 4443–4451
13 Sarkar  M, Acharya  P K, Bhattacharya  B. Removal characteristics of some priority organic pollutants from water in a fixed bed fly ash column. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(12): 1349–1355
https://doi.org/10.1002/jctb.1332
14 Gupta  V K, Srivastava  S K, Tyagi  R. Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Resources, 2000, 34: 1543–1550
15 Lutfor  M R, Silong  S, Wan Yunus  W M Z, Rahman  M Z A, Ahmad  M, Haron  J. Synthesis and characterization of poly(hydroxamic acid) chelating resin from poly(methyl acrylate) grafted sago starch. Journal of Applied Polymer Science, 2000, 79(7): 1256–1264
https://doi.org/10.1002/1097-4628(20010214)79:7<1256::AID-APP130>3.0.CO;2-G
16 Smith  P A S. The Chemistry of Open-Chain Organic Nitrogen Compounds. New York-Amsterdam: Verlag W.A. Benjamin Inc:, 1962
17 Agrawal  Y K. Hydroxamic acids and their metal complexes. Russian Chemical Reviews, 1979, 48(10): 948–963
https://doi.org/10.1070/RC1979v048n10ABEH002422
18 Hall  D, Llewellyn  F J. The crystal structure of formamidoxime. Acta Crystallographica, 1956, 9(2): 108–112
https://doi.org/10.1107/S0365110X56000267
19 Millen  M H, Waters  W A. The electron spin resonance spectra of some hydroxylamine free radicals. Part IV. Radicals from alkylhydroximic acids and amidoximes. Journal of the Chemical Society, Section B: Physical Organic, 1968: 408–411
https://doi.org/10.1039/j29680000408
20 Dorine  L V, Peters  J A, Kuzee  H C, Raaijmakers  H W C, van Bekkum  H. Modification of inulin with amidoxime groups and coordination with copper(II) ions. Carbohydrate Polymers, 1998, 37(3): 209–214
https://doi.org/10.1016/S0144-8617(98)00061-7
21 Martín-Lara  M A, Blázquez  G, Trujillo  M C, Pérez  A, Calero  M. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. Journal of Cleaner Production, 2014, 81: 120–129
https://doi.org/10.1016/j.jclepro.2014.06.036
22 Xu  Y, Zhou  J Z J, Chen  C, Liu  Q, Qian  G, Xu  Z P. CN and heavy metal removal through formation of layered double hydroxides from mixed CN-containing electroplating wastewaters and pickle acid liquor. Chemical Engineering Journal, 2013, 215−216: 411–417
https://doi.org/10.1016/j.cej.2012.10.074
23 Juang  R S, Kao  H C, Liu  F Y. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands. Journal of Hazardous Materials B, 2006, 128(1): 53–59
https://doi.org/10.1016/j.jhazmat.2005.07.027 pmid: 16125313
24 Liu  M, Deng  Y, Zhan  H, Zhang  X. Adsorption and desorption of copper(II) from solutions on new spherical cellulose adsorbent. Journal of Applied Polymer Science, 2002, 84(3): 478–485
https://doi.org/10.1002/app.10114
25 O’Connell  D W, Birkinshaw  C, O’Dwyer  T F. A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions. Journal of Applied Polymer Science, 2006, 99(6): 2888–2897
https://doi.org/10.1002/app.22568
26 Santhana  K K A, Kalidhasan  S, Vidya  R, Rajesh  N. Adsorptive demercuration by virtue of an appealing interaction involving biopolymer cellulose and mercaptobenzothiazole. Industrial & Engineering Chemistry Research, 2013, 52(34): 11838–11849
https://doi.org/10.1021/ie400921p
27 Awual  M R, Yaita  T, El-Safty  S A, Shiwaku  H, Suzuki  H, Okamoto  Y. Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chemical Engineering Journal, 2013, 221: 322–330
https://doi.org/10.1016/j.cej.2013.02.016
28 Awual  M R, Ismail  M M R, Yaita  T, Khaleque  M A, Ferdows  M. pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chemical Engineering Journal, 2014, 236: 100–109
https://doi.org/10.1016/j.cej.2013.09.083
29 Awual  M R, Hasan  M M. Novel conjugate adsorbent for visual detection and removal of toxic lead(II) ions from water. Microporous and Mesoporous Materials, 2014, 196: 261–269
https://doi.org/10.1016/j.micromeso.2014.05.021
30 Awual  M R, Ismael  M, Yaita  T. Efficient detection and extraction of cobalt(II) from lithium ionbatteries and wastewater by novel composite adsorbent. Sensors and Actuators. B, Chemical, 2014, 191: 9–18
https://doi.org/10.1016/j.snb.2013.09.076
31 Awual  M R, Yaita  T, Okamoto  Y. A novel ligand based dual conjugate adsorbent for cobalt(II) and copper(II) ions capturing from water. Sensors and Actuators. B, Chemical, 2014, 203: 71–80
https://doi.org/10.1016/j.snb.2014.06.088
32 Awual  M R, Hasan  M M, Shahat  A. Functionalized novel mesoporous adsorbent for selective lead(II) ionsmonitoring and removal from wastewater. Sensors and Actuators. B, Chemical, 2014, 203: 854–863
https://doi.org/10.1016/j.snb.2014.07.063
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[5] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[6] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[7] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[8] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[9] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[10] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[11] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[12] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[13] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[14] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[15] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed