Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 813-822    https://doi.org/10.1007/s11783-015-0784-z
RESEARCH ARTICLE
Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment
Yanlai HAN1,Michael D. Y. YANG1,Weixian ZHANG2,Weile YAN1,*()
1. Department of Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, USA
2. State Key Laboratory for Pollution Control & Resources Reuse, Tongji University, Shanghai 200092, China
 Download: PDF(980 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.

Keywords iron nanoparticles      nanoscale iron particles (nZVI)      synthesis      characterization      Cu(II) reduction      nitrate reduction     
Corresponding Author(s): Weile YAN   
Online First Date: 17 April 2015    Issue Date: 08 October 2015
 Cite this article:   
Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG, et al. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment[J]. Front. Environ. Sci. Eng., 2015, 9(5): 813-822.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0784-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/813
batch No. synthesis variable adjusted initial FeCl3 concentration/(mol·L−1) molar ratio of NaBH4 to FeCl3 stirring speed/(r·min−1) NaBH4 feeding rate/(mL·min−1)
1 baseline 0.08 5: 1 650 17
2 stirring speed (low) 0.08 5: 1 280 17
3 stirring speed (high) 0.08 5: 1 900 17
4 feeding rate (high) 0.08 5: 1 650 35
5 feeding rate (low) 0.08 5: 1 650 6.8
6 ratio of NaBH4 to FeCl3 (low) 0.08 2: 1 650 17
7 ratio of NaBH4 to FeCl3 (high) 0.08 8: 1 650 17
8 initial FeCl3 concentration (high) 0.2 5: 1 650 17
9 initial FeCl3 concentration (low) 0.04 5: 1 650 17
Tab.1  Experimental conditions used to prepare nZVI evaluated in this study
Fig.1  Morphology characterization of nZVI particles synthesized using the baseline conditions. (a) and (b) are TEM and SEM images of as-synthesized nZVI, (c) and (d) are secondary electron and back-scattered electron images of nZVI reacted with Cu(II) for 10 min
Fig.2  (a) Removal of aqueous Cu(II) by nZVI in N2-sparged solutions and (b) release of dissolved iron into solutions after Cu(II) reaction, (c) Cu(II) removal in a solution open to atmosphere, (d) Cu(II) removal capacity at varying Cu(II)/nZVI loading ratios in deoxygenated solutions. Initial Cu(II) concentration was 200 mg·L−1 in (a) and (c) and varied in the range of 50−1200 mg·L−1 in (b) and (d), dose of nZVI was 0.75 g·L−1 in (d)
Fig.3  Identification of Cu(II) reduction products with X-ray diffraction analysis
Fig.4  Cu(II) reduction by nZVI prepared under different synthesis conditions. (a) Effect of solution agitation speed, (b) effect of reductant feed rate, (c) effect of initial Fe(III) concentration, and (d) effect of reductant to iron molar ratio. For each nZVI, the data points at small Cu/nZVI loading ratios were fitted to a straight line, and the limiting value of Cu(II) removal per unit mass of nZVI, obtained at higher Cu/nZVI ratios, was denoted by a horizontal line
Fig.5  Nitrate reduction by nZVI of different synthesis batches: (a) batch 1; (b) batch 4; (c) batch 7; (d) batch 8. Initial nitrate concentration was 50 mg·L−1 and 150 mg·L−1, respectively. Dose of nZVI was 2 g·L−1. Solid lines are model fit to experimental data using the pseudo-first-order reaction and first-order deactivation model
nZVI batch C0,nitrate = 50 mg·L−1 C0,nitrate = 150 mg·L−1
kR/min−1 kD/min−1 R2 kR/min−1 kD/min−1 R2
1 1.5×10−1 2.1×10−2 0.986 8.6×10−3 1.9×10−2 0.783
4 4.8×10−2 9.4×10−3 0.958 1.5×10−2 2.6×10−2 0.989
7 7.3×10−2 1.1×10−2 0.954 1.2×10−2 2.5×10−2 0.993
8 6.9×10−2 1.7×10−2 0.967 2.9×10−3 1.8×10−2 0.766
Tab.2  Pseudo-first-order reaction rate constants (kR) and first-order deactivation rate constants (kD) of nitrate reduction
Fig.6  Correlation of the initial slope of Cu(II) reduction data with kinetics of nitrate reduction experiments
1 O’Carroll  D, Sleep  B, Krol  M, Boparai  H, Kocur  C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
https://doi.org/10.1016/j.advwatres.2012.02.005
2 Crane  R A, Scott  T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 2012, 211−212: 112–125
https://doi.org/10.1016/j.jhazmat.2011.11.073 pmid: 22305041
3 Mueller  N C, Braun  J, Bruns  J, Černík  M, Rissing  P, Rickerby  D, Nowack  B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 2012, 19(2): 550–558
https://doi.org/10.1007/s11356-011-0576-3 pmid: 21850484
4 Karn  B, Kuiken  T, Otto  M. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives, 2009, 117(12): 1823–1831
https://doi.org/10.1289/ehp.0900793 pmid: 20049198
5 Glavee  G N, Klabunde  K J, Sorensen  C M, Hadjipanayis  G C. Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media— Formation of nanoscale Fe, FeB, and Fe2B powders. Inorganic Chemistry, 1995, 34(1): 28–35
https://doi.org/10.1021/ic00105a009
6 Cushing  B L, Kolesnichenko  V L, O’Connor  C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893–3946
https://doi.org/10.1021/cr030027b pmid: 15352782
7 Liu  H B, Chen  T H, Chang  D Y, Chen  D, Liu  Y, He  H P, Yuan  P, Frost  R. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Materials Chemistry and Physics, 2012, 133(1): 205–211
https://doi.org/10.1016/j.matchemphys.2012.01.008
8 Li  S, Yan  W, Zhang  W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 2009, 11(10): 1618–1626
https://doi.org/10.1039/b913056j
9 He  F, Zhao  D, Paul  C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 2010, 44(7): 2360–2370
https://doi.org/10.1016/j.watres.2009.12.041 pmid: 20106501
10 Zhan  J, Sunkara  B, Le  L, John  V T, He  J, McPherson  G L, Piringer  G, Lu  Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2009, 43(22): 8616–8621
https://doi.org/10.1021/es901968g pmid: 20028061
11 Wang  Q, Kanel  S R, Park  H, Ryu  A, Choi  H. Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. Journal of Nanoparticle Research, 2009, 11(3): 749–755
https://doi.org/10.1007/s11051-008-9524-7
12 Wang  C, Baer  D R, Amonette  J E, Engelhard  M H, Antony  J, Qiang  Y. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 2009, 131(25): 8824–8832
https://doi.org/10.1021/ja900353f pmid: 19496564
13 Ponder  S M, Darab  J G, Bucher  J, Caulder  D, Craig  I, Davis  L, Edelstein  N, Lukens  W, Nitsche  H, Rao  L F, Shuh  D K, Mallouk  T E. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 2001, 13(2): 479–486
https://doi.org/10.1021/cm000288r
14 Shi  Z, Nurmi  J T, Tratnyek  P G. Effects of nano zero-valent iron on oxidation-reduction potential. Environmental Science & Technology, 2011, 45(4): 1586–1592
https://doi.org/10.1021/es103185t pmid: 21204580
15 Liou  Y H, Lo  S L, Kuan  W H, Lin  C J, Weng  S C. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Research, 2006, 40(13): 2485–2492
https://doi.org/10.1016/j.watres.2006.04.048 pmid: 16814362
16 Hwang  Y H, Kim  D G, Shin  H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Applied Catalysis B: Environmental, 2011, 105(1−2): 144–150
https://doi.org/10.1016/j.apcatb.2011.04.005
17 Farrell  J, Kason  M, Melitas  N, Li  T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology, 2000, 34(3): 514–521
https://doi.org/10.1021/es990716y
18 Liu  Y, Phenrat  T, Lowry  G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 2007, 41(22): 7881–7887
https://doi.org/10.1021/es0711967 pmid: 18075103
19 Martin  J E, Herzing  A A, Yan  W, Li  X Q, Koel  B E, Kiely  C J, Zhang  W X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 2008, 24(8): 4329–4334
https://doi.org/10.1021/la703689k pmid: 18303928
20 Ku  Y, Chen  C H. Kinetic-study of copper deposition on iron by cementation reaction. Separation Science and Technology, 1992, 27(10): 1259–1275
https://doi.org/10.1080/01496399208019424
21 Thanh  N T K, Maclean  N, Mahiddine  S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 2014, 114(15): 7610–7630
https://doi.org/10.1021/cr400544s pmid: 25003956
22 Nurmi  J T, Tratnyek  P G, Sarathy  V, Baer  D R, Amonette  J E, Pecher  K, Wang  C, Linehan  J C, Matson  D W, Penn  R L, Driessen  M D. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 2005, 39(5): 1221–1230
https://doi.org/10.1021/es049190u pmid: 15787360
23 Wang  C M, Baer  D R, Thomas  L E, Amonette  J E, Antony  J, Qiang  Y, Duscher  G. Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 2005, 98(9): 094308
https://doi.org/10.1063/1.2130890
24 Sohn  K, Kang  S W, Ahn  S, Woo  M, Yang  S K. Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environmental Science & Technology, 2006, 40(17): 5514–5519
https://doi.org/10.1021/es0525758 pmid: 16999133
25 American Public Health Association. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association, 1998
26 Goldstein  J, Newbury  D E, Joy  D C, Lyman  C E, Echlin  P, Lifshin  E, Sawyer  L, Michael  J R. Scanning Electron Microscopy and X-ray Microanalysis. 3rd ed. New York: Springer, 2003
27 Karabelli  D, Uzum  C, Shahwan  T, Eroglu  A E, Scott  T B, Hallam  K R, Lieberwirth  I. Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 2008, 47(14): 4758–4764
https://doi.org/10.1021/ie800081s
28 Li  X Q, Zhang  W X. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111(19): 6939–6946
https://doi.org/10.1021/jp0702189
29 Macdonald  J E, Veinot  J G C. Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments. Langmuir, 2008, 24(14): 7169–7177
https://doi.org/10.1021/la8006734 pmid: 18543958
30 Rangsivek  R, Jekel  M R. Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research, 2005, 39(17): 4153–4163
https://doi.org/10.1016/j.watres.2005.07.040 pmid: 16181656
31 Liu  Y Q, Choi  H, Dionysiou  D, Lowry  G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 2005, 17(21): 5315–5322
https://doi.org/10.1021/cm0511217
32 Yan  W, Herzing  A A, Kiely  C J, Zhang  W X. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 2010, 118(3−4): 96–104
https://doi.org/10.1016/j.jconhyd.2010.09.003 pmid: 20889228
33 Liu  Y, Majetich  S A, Tilton  R D, Sholl  D S, Lowry  G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345
https://doi.org/10.1021/es049195r pmid: 15787375
34 Klausen  J, Vikesland  P J, Kohn  T, Burris  D R, Ball  W P, Roberts  A L. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environmental Science & Technology, 2003, 37(6): 1208–1218
https://doi.org/10.1021/es025965s pmid: 12680677
35 Ordonez  S, Vivas  B P, Diez  F V. Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters. Applied Catalysis B: Environmental, 2010, 95(3−4): 288–296
https://doi.org/10.1016/j.apcatb.2010.01.006
[1] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[2] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[3] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[4] Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots[J]. Front. Environ. Sci. Eng., 2017, 11(6): 7-.
[5] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
[6] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[7] David WATSON,Carrie MILLER,Brian LESTER,Kenneth LOWE,George SOUTHWORTH,Mary Anna BOGLE,Liyuan LIANG,Eric PIERCE. Mercury source zone identification using soil vapor sampling and analysis[J]. Front. Environ. Sci. Eng., 2015, 9(4): 596-604.
[8] Leila KARIMNEZHAD,Mohammad HAGHIGHI,Esmaeil FATEHIFAR. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2[J]. Front. Environ. Sci. Eng., 2014, 8(6): 835-844.
[9] Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU. Effect of seawater salinity on the synthesis of zeolite from coal fly ash[J]. Front Envir Sci Eng, 2014, 8(1): 54-61.
[10] Xiaoliang WANG, Curtis ROBBINS, S. Kent HOEKMAN, Judith C. CHOW, John G. WATSON, Dennis SCHUETZLE. Dilution sampling and analysis of particulate matter in biomass-derived syngas[J]. Front Envir Sci Eng Chin, 2011, 5(3): 320-330.
[11] Fei XU, Yanwei ZHAO, Zhifeng YANG, Yuan ZHANG. Multi-scale evaluation of river health in Liao River Basin, China[J]. Front Envir Sci Eng Chin, 2011, 5(2): 227-235.
[12] ZHANG Yunxia, LI Tielong, JIN Zhaohui, WANG Wei, WANG Shuaima. Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate in water[J]. Front.Environ.Sci.Eng., 2007, 1(4): 466-470.
[13] LUO Weiguo, WANG Shihe, HUANG Juan, YAN Lu, HUANG Jun. Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands[J]. Front.Environ.Sci.Eng., 2007, 1(3): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed