Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 804-812    https://doi.org/10.1007/s11783-015-0785-y
RESEARCH ARTICLE
Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method
Ruiqiang LIU(), Rattan LAL
Carbon Management & Sequestration Center, School of Environment & Natural Resources, the Ohio State University, Columbu, OH 43210, USA
 Download: PDF(2370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nano-sized apatite particles (nAP) synthesized with carboxymethyl cellulose (CMC) have shown great application potentials in in situ heavy metal remediation. However, differences in CMC’s properties effects on the size of nAP produced are not well understood. In this paper, two types of CMC, with respective molecular weights (MW) of ~120000 and ~240000 Dalton or respective polymerization degrees of 500 (CMC-500) and 1050 (CMC-1050), were studied in a concentration range of 0.05%–0.5% (w/w) for nAP synthesis. Morphology of the particles was characterized with transmission electron microscopy (TEM). Results showed that 0.05% CMC-500 solution gave an average particle size of 148.7±134.9 nm, 0.25% CMC-500 solution produced particles of 21.8±20.4 nm, and, 0.5% CMC-500 solution contained particles of 15.8±7.7 nm. In comparison, 0.05% CMC-1050 solution produced nanoparticles of 6.8±3.2 nm, 0.25% CMC-1050 produced smaller nAP of 4.3±3.2 nm, and 0.5% CMC-1050 synthesized the smallest nanoparticles in this study, with an average diameter of 3.0±2.1 nm. Chemical composition of the products was identified with X-ray diffraction (XRD) as pure hydroxyapatite. Interactions between nAP and CMC were discussed with help of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data. This study showed that CMC at higher concentration as well as higher MW facilitated to produce finer nanoparticles, showing that nAP size could be manipulated by selecting appropriate CMC MW and/or applying appropriate CMC concentration.

Keywords nanotechnology      nanoparticles      apatite      carboxymethyl cellulose (CMC)      particle size     
Corresponding Author(s): Ruiqiang LIU   
Online First Date: 24 April 2015    Issue Date: 08 October 2015
 Cite this article:   
Ruiqiang LIU,Rattan LAL. Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method[J]. Front. Environ. Sci. Eng., 2015, 9(5): 804-812.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0785-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/804
solution ID polymerization of CMC (n) CMC concentration by weight (w/w) /% CMC molar concentration /( × 10−3 mmol·L−1) glucose unit molar concentration /( mmol·L−1) Ca molar concentration /( mmol·L−1) nAP molar concentration /( mmol·L−1) molar ratio of glucose unit to Ca
CMC-500-A 500 0.05 4.59 2.3 10 2 ~1:5
CMC-1050-A 1050 0.05 2.18 2.3 10 2 ~1:5
CMC-500-B 500 0.25 22.9 11.4 10 2 ~1:1
CMC-1050-B 1050 0.25 10.9 11.4 10 2 ~1:1
CMC-500-C 500 0.5 45.9 22.9 10 2 ~2:1
CMC-1050-C 1050 0.5 21.8 22.9 10 2 ~2:1
Tab.1  Compositions of nano-sized hydroxyapatite solutions in this study
Fig.1  Appearances of 1?mmol·L−1 nAP solutions prepared in different solutions: (a) deionized (DI) water, left; 0.5% CMC-500 solution, right. (b) 0.05% CMC-500 solution (CMC-500-A), left; 0.25% CMC-500 solution (CMC-500-B), middle; and 0.5% CMC solution (CMC-500-C), right. (c) 0.05% CMC-1050) solution (CMC-1050-A), left; 0.25% CMC-1050 solution (CMC-1050-B), middle; and 0.5% CMC-1050 solution (CMC-1050-C), right
solution ID solution pH solution light absorbance (λ = 580?nm) solution viscosity /mPaS initial CMC viscosity /mPaS
CMC-500-A 7.56 0.060 0.01 0.47
CMC-1050-A 7.44 0.031 0.06 0.63
CMC-500-B 7.30 0.012 1.25 7.03
CMC-1050-B 7.21 0.018 0.38 0.94
CMC-500-C 7.20 0.016 1.25 6.88
CMC-1050-C 7.04 0.011 8.44 100.6
Tab.2  Some bulk properties of nano-sized hydroxyapatite solutions prepared with CMC
Fig.2  Transmission electron microscopic images of 1?mmol·L−1 nAP prepared under (a) 0.05% CMC-500 solution (CMC-500-A), (b) 0.25% CMC-500 solution (CMC-500-B), (c) 0.5% CMC solution (CMC-500-C), (d) 0.05% CMC-1050) solution (CMC-1050-A), (e) 0.25% CMC-1050 solution (CMC-1050-B), and (f) 0.5% CMC-1050 solution (CMC-1050-C)
Fig.3  X-ray diffraction patterns of hydroxyapatite prepared in deionized water (top) and in 0.5% CMC-500 solution (bottom)
Fig.4  ATR-FTIR spectra of CMC-500-hydroxyapatite nanocomposite (solid line) and pure CMC-500 (dotted-line)
Fig.5  Model of CMC-hydroxyapatite composite. S refers to Ca2+ or Ca5(PO4)3OH, and * refers to the residual negative charge
1 P K Chaturvedi, C S Seth, V Misra. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere, 2006, 64(7): 1109–1114
https://doi.org/10.1016/j.chemosphere.2005.11.077 pmid: 16423377
2 D Tica, M Udovic, D Lestan. Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 2011, 85(4): 577–583
https://doi.org/10.1016/j.chemosphere.2011.06.085 pmid: 21767865
3 D Tica, M Udovic, D Lestan. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning. Chemosphere, 2013, 91(1): 1–6
https://doi.org/10.1016/j.chemosphere.2012.11.011 pmid: 23219407
4 S Mignardi, A Corami, V Ferrini. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 2012, 86(4): 354–360
https://doi.org/10.1016/j.chemosphere.2011.09.050 pmid: 22024096
5 R Liu, D Zhao. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere, 2013, 91(5): 594–601
https://doi.org/10.1016/j.chemosphere.2012.12.034 pmid: 23336925
6 R Liu, R Lal. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 2014, 4: 5686–5691
pmid: 25023201
7 F He, D Zhao, J Liu, C B Roberts. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 2007, 46(1): 29–34
https://doi.org/10.1021/ie0610896
8 Q Wang, H Qian, Y Yang, Z Zhang, C Naman, X Xu. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Journal of Contaminant Hydrology, 2010, 114(1−4): 35–42
https://doi.org/10.1016/j.jconhyd.2010.02.006 pmid: 20304518
9 Y S El-Temsah, E J Joner. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 2012, 89(1): 76–82
https://doi.org/10.1016/j.chemosphere.2012.04.020 pmid: 22595530
10 S Si, A Kotal, T K Mandal, S Giri, H Nakamura, T Kohara. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 2004, 16(18): 3489–3496
https://doi.org/10.1021/cm049205n
11 R Liu, D Zhao. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 2007, 41(12): 2491–2502
https://doi.org/10.1016/j.watres.2007.03.026 pmid: 17482234
12 S H Joo, S R Al-Abed, T Luxton. Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands. Environmental Science & Technology, 2009, 43(13): 4954–4959
https://doi.org/10.1021/es900329d pmid: 19673291
13 A A Hebeish, M H El-Rafie, F A Abdel-Mohdy, E S Abdel-Halim, H E Emam. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers, 2010, 82(3): 933–941
https://doi.org/10.1016/j.carbpol.2010.06.020
14 J Liu, J Sutton, C B Roberts. Synthesis and extraction of monodisperse sodium carboxymethylcellulose-stabilized platinum nanoparticles for the self-assembly of ordered arrays. Journal of Physical Chemistry C, 2007, 111(31): 11566–11576
https://doi.org/10.1021/jp071967t
15 J Tan, R Liu, W Wang, W Liu, Y Tian, M Wu, Y Huang. Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose. Langmuir, 2010, 26(3): 2093–2098
https://doi.org/10.1021/la902593e pmid: 19722539
16 F He, D Zhao. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 2007, 41(17): 6216–6221
https://doi.org/10.1021/es0705543 pmid: 17937305
17 F García-Orenes, C Guerrero, J Mataix-Solera, J Navarro-Pedrenõ, I Gómez, J Mataix-Beneyto. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil & Tillage Research, 2005, 82(1): 65–76
https://doi.org/10.1016/j.still.2004.06.004
18 Z S Wang, M T Hung, J C Liu. Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Science and Technology, 2007, 56(8): 125–132
https://doi.org/10.2166/wst.2007.708 pmid: 17978440
19 G Ojeda, J M Alcañiz, Le Y Bissonnais. Differences in aggregate stability due to various sewage sludge treatments on a mediterranean calcareous soil. Agriculture, Ecosystems & Environment, 2008, 125(1−4): 48–56
https://doi.org/10.1016/j.agee.2007.11.005
20 E Bouyer, F Gitzhofer, M I Boulos. Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science. Materials in Medicine, 2000, 11(8): 523–531
https://doi.org/10.1023/A:1008918110156 pmid: 15348004
21 M P Ferraz, F J Monteiro, C M Manuel. Hydroxyapatite nanoparticles: a review of preparation methodologies. Journal of Applied Biomaterials & Biomechanics, 2004, 2(2): 74–80
pmid: 20803440
22 Agricolae F de M. R package version 1.1−8. 2014.
23 R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2014.
24 V Amendola, M Meneghetti. Size evaluation of gold nanoparticles by UV-vis spectroscopy. Journal of Physical Chemistry C, 2009, 113(11): 4277–4285
https://doi.org/10.1021/jp8082425
25 Q Wang, S W Cui. Understanding the physical properties of food polysaccharides. In: S W Cui, ed. Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton: CRC Press, 2005, 161–218
26 X Yang, W Zhu. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose (London, England), 2007, 14(5): 409–417
https://doi.org/10.1007/s10570-007-9137-9
27 T Matsumoto, H Zenkoh. A new molecular model for complexation between carboxymethylcellulose and alkaline- earth metal ions in aqueous systems. Food Hydrocolloids, 1992, 6(4): 379–386
https://doi.org/10.1016/S0268-005X(09)80005-2
28 R G Shimmin, A B Schoch, P V Braun. Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir, 2004, 20(13): 5613–5620
https://doi.org/10.1021/la036365p pmid: 15986709
[1] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[2] Wanpeng Chen, Jiahui Song, Shaojie Jiang, Qiang He, Jun Ma, Xiaoliu Huangfu. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2022, 16(2): 16-.
[3] Shansi Wang, Siwei Li, Jia Xing, Jie Yang, Jiaxin Dong, Yu Qin, Shovan Kumar Sahu. Evaluation of the influence of El Niño–Southern Oscillation on air quality in southern China from long-term historical observations[J]. Front. Environ. Sci. Eng., 2022, 16(2): 26-.
[4] Xin Xing, Na Li, Dandan Liu, Jie Cheng, Zhengping Hao. Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide[J]. Front. Environ. Sci. Eng., 2022, 16(10): 125-.
[5] Xiangyu Yang, Qiang He, Fucheng Guo, Xiaobo Liu, Yi Chen. Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 138-.
[6] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[7] Manman Ma, Bo Zhang, Ye Chen, Wenrong Feng, Tiezhu Mi, Jianhua Qi, Wenshuai Li, Zhigang Yu, Yu Zhen. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region[J]. Front. Environ. Sci. Eng., 2021, 15(3): 42-.
[8] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[9] Jianfeng Zhou, Ting Wang, Cecilia Yu, Xing Xie. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(5): 78-.
[10] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[11] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[12] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[13] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[14] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[15] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed