Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 905-911    https://doi.org/10.1007/s11783-015-0786-x
RESEARCH ARTICLE
Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars
Jianguo LIU(),Hui CAI,Congcong MEI,Mingxin WANG
School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
 Download: PDF(409 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg−1 and 1000 mg·kg−1). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg−1, the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg−1)>moderate Pb stress (500 mg·kg−1)>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.

Keywords silicon (Si)      lead (Pb)      rice (Oryza sativa L.)      toxicity      accumulation     
Corresponding Author(s): Jianguo LIU   
Just Accepted Date: 08 April 2015   Online First Date: 24 April 2015    Issue Date: 08 October 2015
 Cite this article:   
Hui CAI,Congcong MEI,Mingxin WANG, et al. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars[J]. Front. Environ. Sci. Eng., 2015, 9(5): 905-911.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0786-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/905
soil type particle size/(g?kg−1) pH OM a)/(g?kg−1) CEC b)/(cmol?kg−1) available Si/(mg·kg−1) total Pb/(mg?kg−1)
sand silt clay
paddy soil 557.8 242.4. 199.8 6.3 26.9 14.6 103.5 32.7
Tab.1  Selected properties of the soil used in this experiment
Fig.1  Effects of silicon on biomasses of rice plants. (a) The rice cultivar Yangdao 6, (b) the rice cultivar Yu 44. NPbT: no Pb treatment, the soil Pb concentration is 32.7 mg·kg−1. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
Fig.2  Effects of silicon on Pb concentrations in rice roots. (a) Yangdao 6, (b) Yu 44. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
Fig.3  Effects of silicon on Pb concentrations in rice shoots. (a) Yangdao 6, (b) Yu 44. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
Fig.4  Effects of silicon on Pb concentrations in rice grains. (a) Yangdao 6, (b) Yu 44. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
Fig.5  Effects of silicon on translocation factors (TFs) of Pb from roots to shoots (Pb concentration ratio of shoot to root). (a) Yangdao 6, (b) Yu 44. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
Fig.6  Effects of silicon on translocation factors (TFs) of Pb from shoots to grains (Pb concentration ratio of grain to shoot). (a) Yangdao 6, (b) Yu 44. Different letters above the columns of a Pb treatment indicate significant difference between Si treatments at P<0.05 within the Pb treatment
1 Yadav  S K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 2010, 76(2): 167–179
https://doi.org/10.1016/j.sajb.2009.10.007
2 Duong  T T T, Lee  B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 2011, 92(3): 554–562
https://doi.org/10.1016/j.jenvman.2010.09.010 pmid: 20937547
3 Yang  Q W, Shu  W S, Qiu  J W, Wang  H B, Lan  C Y. Lead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Environment International, 2004, 30(7): 883–889
https://doi.org/10.1016/j.envint.2004.02.002 pmid: 15196836
4 Wei  B, Yang  L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99–107
https://doi.org/10.1016/j.microc.2009.09.014
5 Silbergeld  E K, Waalkes  M, Rice  J M. Lead as a carcinogen: experimental evidence and mechanisms of action. American Journal of Industrial Medicine, 2000, 38(3): 316–323
https://doi.org/10.1002/1097-0274(200009)38:3<316::AID-AJIM11>3.0.CO;2-P pmid: 10940970
6 Zhuang  P, McBride  M B, Xia  H, Li  N, Li  Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 2009, 407(5): 1551–1561
https://doi.org/10.1016/j.scitotenv.2008.10.061 pmid: 19068266
7 Gong  H J, Randall  D P, Flowers  T J. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell & Environment, 2006, 29(10): 1970–1979
https://doi.org/10.1111/j.1365-3040.2006.01572.x pmid: 16930322
8 Shetty  R, Jensen  B, Shetty  N P, Hansen  M, Hansen  C W, Starkey  K R, Jørgensen  H J L. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathology, 2012, 61(1): 120–131
https://doi.org/10.1111/j.1365-3059.2011.02493.x
9 Mateos-Naranjo  E, Andrades-Moreno  L, Davy  A J. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 2013, 63: 115–121
https://doi.org/10.1016/j.plaphy.2012.11.015 pmid: 23257076
10 Li  P, Song  A, Li  Z J, Fan  F L, Liang  Y C. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant and Soil, 2012, 354(1−2): 407–419
https://doi.org/10.1007/s11104-011-1076-4
11 Song  A, Li  Z, Zhang  J, Xue  G, Fan  F, Liang  Y. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials, 2009, 172(1): 74–83
https://doi.org/10.1016/j.jhazmat.2009.06.143 pmid: 19616891
12 Ali  S, Farooq  M A, Yasmeen  T, Hussain  S, Arif  M S, Abbas  F, Bharwana  S A, Zhang  G. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety, 2013, 89: 66–72
https://doi.org/10.1016/j.ecoenv.2012.11.015 pmid: 23260243
13 Shi  Q, Bao  Z, Zhu  Z, He  Y, Qian  Q, Yu  J. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry, 2005, 66(13): 1551–1559
https://doi.org/10.1016/j.phytochem.2005.05.006 pmid: 15963540
14 Kaya  C, Tuna  A L, Sonmez  O, Ince  F, Higgs  D. Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition, 2009, 32(10): 1788–1798
https://doi.org/10.1080/01904160903152624
15 Rizwan  M, Meunier  J D, Miche  H, Keller  C. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Materials, 2012, 209−210: 326–334
16 Wu  J W, Shi  Y, Zhu  Y X, Wang  Y C, Gong  H J. Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere, 2013, 23(6): 815–825
https://doi.org/10.1016/S1002-0160(13)60073-9
17 Liu  J G, Li  K Q, Xu  J K, Zhang  Z J, Ma  T B, Lu  X L, Yang  J C, Zhu  Q S. Lead toxicity, uptake and translocation in different rice cultivars. Plant Science, 2003, 165(4): 793–802
https://doi.org/10.1016/S0168-9452(03)00273-5
18 Wang  S H, Luo  Q S, Liu  C P, Li  F B, Shen  Z G. Effects of leaf application of nanometer silicon to the accumulation of heavy metals in rice grains. Ecology & Environment, 2007, 16(5): 875–878 (in Chinese)
19 Doncheva  S, Poschenrieder  C, Stoyanova  Z, Georgieva  K, Velichkova  M, Barceló  J. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 2009, 65(2−3): 189–197
https://doi.org/10.1016/j.envexpbot.2008.11.006
20 Katayama  H, Banba  N, Sugimura  Y, Tatsumi  M, Kusakari  S, Oyama  H, Nakahira  A. Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential. Environmental and Experimental Botany, 2013, 85: 30–35
https://doi.org/10.1016/j.envexpbot.2012.06.001
21 Liu  J, Zhang  H, Zhang  Y, Chai  T. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiology and Biochemistry, 2013, 68: 1–7
https://doi.org/10.1016/j.plaphy.2013.03.018 pmid: 23608626
22 Khandekar  S, Leisner  S. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. Journal of Plant Physiology, 2011, 168(7): 699–705
https://doi.org/10.1016/j.jplph.2010.09.009 pmid: 21044806
23 Nwugo  C C, Huerta  A J. Silicon-induced cadmium resistance in rice (Oryza sativa). Journal of Plant Nutrition and Soil Science, 2008, 171(6): 841–848
https://doi.org/10.1002/jpln.200800082
24 Ma  J F, Tamai  K, Yamaji  N, Mitani  N, Konishi  S, Katsuhara  M, Ishiguro  M, Murata  Y, Yano  M. A silicon transporter in rice. Nature, 2006, 440(7084): 688–691
https://doi.org/10.1038/nature04590 pmid: 16572174
25 Liu  J G, Zhang  W, Qu  P, Wang  M X. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Frontiers of Environmental Science & Engineering, doi: 10.1007/s11783-014-0746-x
26 Inal  A, Pilbeam  D J, Gunes  A. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition, 2009, 32(1): 112–128
https://doi.org/10.1080/01904160802533767
27 Rogalla  H, Römheld  V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell & Environment, 2002, 25(4): 549–555
https://doi.org/10.1046/j.1365-3040.2002.00835.x
28 Vaculík  M, Landberg  T, Greger  M, Luxová  M, Stoláriková  M, Lux  A. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 2012, 110(2): 433–443
https://doi.org/10.1093/aob/mcs039 pmid: 22455991
29 Ye  J, Yan  C, Liu  J, Lu  H, Liu  T, Song  Z. Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. Environmental Pollution, 2012, 162: 369–373
https://doi.org/10.1016/j.envpol.2011.12.002 pmid: 22243887
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[3] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[4] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[5] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[6] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[7] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[8] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[9] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[10] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[11] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[12] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[13] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[14] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[15] Naiyu Wang, Kai Wang, Can Wang. Comparison of different algicides on growth of Microcystis aeruginosa and microcystin release, as well as its removal pathway in riverways[J]. Front. Environ. Sci. Eng., 2017, 11(6): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed