Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 823-831    https://doi.org/10.1007/s11783-015-0787-9
RESEARCH ARTICLE
Interaction of carbonaceous nanomaterials with wastewater biomass
Yu YANG1,*(),Zhicheng YU1,Takayuki NOSAKA2,Kyle DOUDRICK3,Kiril HRISTOVSKI4,Pierre HERCKES5,Paul WESTERHOFF1
1. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
2. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
3. Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
4. The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
5. Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
 Download: PDF(640 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Increasing production and use of carbonaceous nanomaterials (NMs) will increase their release to the sewer system and to municipal wastewater treatment plants. There is little quantitative knowledge on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG) from wastewater into the wastewater biomass. As such, we investigated the quantification of GO and MWCNTs by UV-Vis spectrophotometry, and FLG using programmable thermal analysis (PTA), respectively. We further explored the removal of pristine and oxidized MWCNTs (O-MWCNTs), GO, and FLG in a biomass suspension. At least 96% of pristine and O-MWCNTs were removed from the water phase through aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg·L−1. Only 65% of GO was removed with biomass concentration at or above 1,000 mg·L−1 as total suspended solids (TSS) with the initial GO concentration of 25 mg·L−1. As UV-Vis spectrophotometry does not work well on quantification of FLG, we studied the removal of FLG at a lower biomass concentration (50 mg TSS·L−1) using PTA, which showed a 16% removal of FLG with an initial concentration of 1 mg·L−1. The removal data for GO and FLG were fitted using the Freundlich equation (R2 = 0.55, 0.94, respectively). The data presented in this study for carbonaceous NM removal from wastewater provides quantitative information for environmental exposure modeling and life cycle assessment.

Keywords multi-walled carbon nanotubes      graphene oxide      graphene      removal      wastewater biomass     
Corresponding Author(s): Yu YANG   
Just Accepted Date: 08 April 2015   Online First Date: 24 April 2015    Issue Date: 08 October 2015
 Cite this article:   
Yu YANG,Zhicheng YU,Takayuki NOSAKA, et al. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0787-9
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/823
Fig.1  (a) UV-Vis characterization of graphene oxide (GO) suspension (20 mg·L−1), carbon nanotubes with surface oxygen content of 8.3% (25 mg·L−1), and biomass supernatant (after 30 minutes settling of 1,000 mg·L−1 biomass). (b) PTA thermogram for adsorption test of FLG in biomass under He/O2 atmosphere. Signal in shaded area (>775 °C) is counted for FLG quantification of 50 µg
Fig.2  UV-Vis scan of supernatant after biomass absorption on O-MWCNTs with 8.3% O. Initial O-MWCNT concentration is 25 mg·L−1. O-MWCNT control did not include biomass but only 25 mg O-MWCNT·L−1
Fig.3  UV-Vis scan of supernatant after biomass absorption on graphene oxide (GO). Initial GO concentration is 25 mg·L−1. GO control did not include biomass but only 25 mg GO·L−1
Fig.4  Analysis using a Freundlich model of the supernatant NM (i.e., GO and FLG) concentrations (Cs, mg·L−1) versus the amount of NM in the biomass (q, mg NM · mg TSS−1). The initial concentration of GO was 25 mg·L−1 with varied biomass concentration (50 − 3,000 mg TSS·L−1). The initial concentration of FLG was 0.3− 8.3 mg·L−1 with a fixed biomass concentration of 50 mg·L−1
nanomaterials diameter of NMs/(nm) initial concentration of NMs/(mg·L−1) biomass concentration /(mg·L−1) percentage removal references
multi-walled CNTs with 0.4% −8.3% oxygen 12 25 1,000 >96% this study
graphene oxide (GO) 1.1a) 25 1,000 65% this study
few Layer Graphene (FLG) 10 − 20a) 1 50 16% this study
fullerene (aq-nC60) 88 4 400 90% [19]
functionalized fullerene (nC60(OH)x) 48 12 400 14% [19]
fullerene 88 0.07−2 500−2,000 95% [32]
CNTs 90% −97% b) [8]
general nanomaterials 32% −77% b) [33]
Tab.1  Percentage removal of nanomaterials by the wastewater biomass
1 U.S.EPA. Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report). U.S. Environmental Protection Agency, Washington, D C:  2013
2 Baur  J, Silverman  E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bulletin, 2007, 32(04): 328–334
https://doi.org/10.1557/mrs2007.231
3 Petersen  E J, Zhang  L, Mattison  N T, O’Carroll  D M, Whelton  A J, Uddin  N, Nguyen  T, Huang  Q, Henry  T B, Holbrook  R D, Chen  K L. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environmental Science & Technology, 2011, 45(23): 9837–9856
https://doi.org/10.1021/es201579y pmid: 21988187
4 Piccinno  F, Gottschalk  F, Seeger  S, Nowack  B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 2012, 14(9): 1–11
5 Hendren  C O, Mesnard  X, Dröge  J, Wiesner  M R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environmental Science & Technology, 2011, 45(7): 2562–2569
https://doi.org/10.1021/es103300g pmid: 21391627
6 Clark  S, Mallick  G G. Global graphene market (product type, application, geography)—size, share, global trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2013−2020. Allied Market Research, 2014
7 Nowack  B, David  R M, Fissan  H, Morris  H, Shatkin  J A, Stintz  M, Zepp  R, Brouwer  D. Potential release scenarios for carbon nanotubes used in composites. Environment International, 2013, 59: 1–11
https://doi.org/10.1016/j.envint.2013.04.003 pmid: 23708563
8 Mueller  N C, Nowack  B. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 2008, 42(12): 4447–4453
https://doi.org/10.1021/es7029637 pmid: 18605569
9 Gottschalk  F, Sonderer  T, Scholz  R W, Nowack  B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology, 2009, 43(24): 9216–9222
https://doi.org/10.1021/es9015553 pmid: 20000512
10 U.S.EPA. Interim Technical Guidance for Assessing Screening Level Environmental Fate and Transport of, and General Population, Consumer, and Environmental Exposure to Nanomaterials 2010. Office of Pollution Prevention and Toxics (OPPT), U.S. Environmental Protection Agency, Washington, D C: 2011
11 Herrero-Latorre  C, Álvarez-Méndez  J, Barciela-García  J, García-Martín  S, Peña-Crecente  R M. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Analytica chimica acta, 2015, 853: 77–94
12 Plata  D L, Reddy  C M, Gschwend  P M. Thermogravimetry-mass spectrometry for carbon nanotube detection in complex mixtures. Environmental Science & Technology, 2012, 46(22): 12254–12261
https://doi.org/10.1021/es203198x pmid: 22283840
13 Doudrick  K, Herckes  P, Westerhoff  P. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Environmental Science & Technology, 2012, 46(22): 12246–12253
https://doi.org/10.1021/es300804f pmid: 22663014
14 Doudrick  K, Corson  N, Oberdörster  G, Eder  A C, Herckes  P, Halden  R U, Westerhoff  P. Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. ACS Nano, 2013, 7(10): 8849–8856
https://doi.org/10.1021/nn403302s pmid: 23992048
15 Doudrick  K, Nosaka  T, Herckes  P, Westerhoff  P. Quantification of graphene and graphene oxide in complex organic matrices. Environmental Science: Nano, 2015, 2: 60–67
16 Smith  B, Wepasnick  K, Schrote  K E, Cho  H H, Ball  W P, Fairbrother  D H. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir, 2009, 25(17): 9767–9776
https://doi.org/10.1021/la901128k pmid: 19583226
17 Yi  P, Chen  K L. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir, 2011, 27(7): 3588–3599
https://doi.org/10.1021/la104682b pmid: 21355574
18 Cho  H H, Smith  B A, Wnuk  J D, Fairbrother  D H, Ball  W P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology, 2008, 42(8): 2899–2905
https://doi.org/10.1021/es702363e pmid: 18497141
19 Kiser  M A, Ryu  H, Jang  H, Hristovski  K, Westerhoff  P. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Research, 2010, 44(14): 4105–4114
https://doi.org/10.1016/j.watres.2010.05.036 pmid: 20547403
20 APHA. AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), 2005
21 Grady  J L C P, Daigger  G T, Lim  H C. Biological Wastewater Treatment. 2nd ed. Revised and Expanded ed. Florida: CRC Press, 1999
22 Shin  H J, Kim  K K, Benayad  A, Yoon  S M, Park  H K, Jung  I S, Jin  M H, Jeong  H K, Kim  J M, Choi  J Y, Lee  Y H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009, 19(12): 1987–1992
https://doi.org/10.1002/adfm.200900167
23 Zhang  J, Yang  H, Shen  G, Cheng  P, Zhang  J, Guo  S. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 2010, 46(7): 1112–1114
https://doi.org/10.1039/B917705A pmid: 20126730
24 Saleh  N B, Pfefferle  L D, Elimelech  M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environmental Science & Technology, 2008, 42(21): 7963–7969
https://doi.org/10.1021/es801251c pmid: 19031888
25 Suzuki  K, Tanaka  Y, Osada  T, Waki  M. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research, 2002, 36(12): 2991–2998
https://doi.org/10.1016/S0043-1354(01)00536-X pmid: 12171396
26 Wiesner  M R, Bottero  J Y. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique, 2011, 12(7): 659–668 (in German)
https://doi.org/10.1016/j.crhy.2011.06.008
27 Westerhoff  P, Nowack  B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Accounts of Chemical Research, 2013, 46(3): 844–853
https://doi.org/10.1021/ar300030n pmid: 22950943
28 Yang  Y, Chen  Q, Wall  J D, Hu  Z. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research, 2012, 46(4): 1176–1184
https://doi.org/10.1016/j.watres.2011.12.024 pmid: 22209276
29 Neidhardt  F C. Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington, D C: ASM Press, 1996
30 Yang  S T, Chang  Y, Wang  H, Liu  G, Chen  S, Wang  Y, Liu  Y, Cao  A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 2010, 351(1): 122–127
https://doi.org/10.1016/j.jcis.2010.07.042 pmid: 20705296
31 He  H, Klinowski  J, Forster  M, Lerf  A. A new structural model for graphite oxide. Chemical Physics Letters, 1998, 287(1−2): 53–56
https://doi.org/10.1016/S0009-2614(98)00144-4
32 Wang  Y, Westerhoff  P, Hristovski  K D. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 2012, 201−202(0): 16–22
https://doi.org/10.1016/j.jhazmat.2011.10.086 pmid: 22154869
33 Keller  A A, Lazareva  A. Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science & Technology Letters, 2014, 1(1): 65–70
https://doi.org/10.1021/ez400106t
34 Chen  K L, Elimelech  M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environmental Science & Technology, 2009, 43(19): 7270–7276
https://doi.org/10.1021/es900185p pmid: 19848133
35 Becker  W C, Foundation  A R. Using Oxidants to Enhance Filter Performance. AWWA Research Foundation and American Water Works Association, 2004
[1] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[4] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[5] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[6] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[7] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[8] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[9] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[10] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[11] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Yameng Li, Ziyu Liang. The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic[J]. Front. Environ. Sci. Eng., 2020, 14(6): 94-.
[12] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[13] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[14] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[15] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed