Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 784-792    https://doi.org/10.1007/s11783-015-0790-1
RESEARCH ARTICLE
Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes
Shubo DENG(),Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU
State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing Key Laboratory for Control of Emerging Organic Contaminants, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(643 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Co-existing organic compounds may affect the adsorption of perfluorinated compounds (PFCs) and carbon nanotubes in aquatic environments. Adsorption of perfluorooctane sulfonate (PFOS), perfluorooctane acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFHxS) on the pristine multi-walled carbon nanotubes (MWCNTs-Pri), carboxyl functionalized MWCNTs (MWCTNs-COOH), and hydroxyl functionalized MWCNTs (MWCNTs-OH) in the presence of humic acid, 1-naphthol, phenol, and benzoic acid was studied. Adsorption kinetics of PFOS was described well by the pseudo-second-order model and the sorption equilibrium was almost reached within 24 h. The effect of co-existing organic compounds on PFOS adsorption followed the decreasing order of humic acid>1-naphthol>benzoic acid>phenol. Adsorbed amounts of PFOS decreased significantly in the presence of co-existing or preloaded humic acid, and both adsorption energy and effective adsorption sites on the three MWCNTs decreased, resulting in the decrease of PFOS adsorption. With increasing pH, PFOS removal by three MWCNTs decreased in the presence of humic acid and phenol. The adsorbed amounts of different PFCs on the MWCNTs increased in the order of PFBS<PFHxS<PFOA<PFOS. The increase of both initial concentrations and the number of aromatic rings of co-existing organic compounds suppressed PFOS adsorption on the MWCNTs.

Keywords perfluorinated compounds      carbon nanotubes      competitive adsorption      humic acid      perfluorooctane sulfonate (PFOS)     
Corresponding Author(s): Shubo DENG   
Online First Date: 12 May 2015    Issue Date: 08 October 2015
 Cite this article:   
Shubo DENG,Yue BEI,Xinyu LU, et al. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0790-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/784
adsorbents adsorbates qe/(μmol·g−1) ν0/(μmol·g−1·h−1) k2/(g·μmol−1·h−1) R2
MWCNTs-Pri PFOS 9.1 4.04 0.05 0.996
PFOS+ HA 5.0 3.41 0.13 0.993
PFOS+ Phenol 8.6 3.25 0.04 0.982
MWCNTs-COOH PFOS 11.1 8.24 0.07 0.999
PFOS+ HA 6.4 5.57 0.14 0.988
PFOS+ Phenol 9.7 4.19 0.04 0.991
MWCNTs-OH PFOS 13.1 10.00 0.06 0.990
PFOS+ HA 7.6 7.11 0.12 0.980
PFOS+ Phenol 10.8 4.67 0.04 0.981
Tab.1  Kinetic parameters of the pseudo second-order equation* for PFOS adsorption on three MWCNTs
Fig.1  Adsorption kinetics of PFOS on the MWCNTs-Pri (a), MWCNTs-COOH (b), and MWCNTs-OH (c) in the presence and absence of humic acid and phenol as well as modeling with the pseudo second-order equation
adsorbents conditions Freundlich parameters
KF n R2
MWCNTs-Pri no humic acid 1.72 0.48 0.987
preloaded humic acid 0.42 0.65 0.994
simultaneous humic acid 1.15 0.45 0.976
MWCNTs-COOH no humic acid 2.30 0.50 0.990
preloaded humic acid 0.81 0.69 0.999
simultaneous humic acid 1.61 0.53 0.992
MWCNTs-OH no humic acid 2.76 0.51 0.994
preloaded humic acid 1.07 0.68 0.998
simultaneous humic acid 1.89 0.49 0.990
Tab.2  Parameters of Freundlich equation * for PFOS adsorption on three MWCNTs
Fig.2  Adsorption isotherms of PFOS on three MWCNTs in the presence or absence of humic acid ((a) PFOS, (c) humic acid preloaded+ PFOS, (e) PFOS+ humic acid simultaneously) and their corresponding adsorption site energy distribution curves ((b) PFOS, (d) humic acid preloaded+ PFOS, (f) PFOS+ humic acid simultaneously)
Fig.3  Effect of pH on PFOS adsorption on MWCNTs-Pri (a), MWCNTs-COOH (b), and MWCNTs-OH (c) in the presence or absence of humic acid and phenol
Fig.4  Adsorption of PFBS, PFHxS, PFOS, PFOA on MWCNTs-Pri (a), MWCNTs-COOH (b), and MWCNTs-OH (c) in the presence or absence of humic acid or phenol
Fig.5  Effect of initial concentrations of different co-existing organic compounds on PFOS adsorption onto MWCNTs-Pri (a), MWCNTs-COOH (b) and MWCNTs-OH (c)
1 Paul  A G, Jones  K C, Sweetman  A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environmental Science & Technology, 2009, 43(2): 386–392
https://doi.org/10.1021/es802216n pmid: 19238969
2 Zareitalabad  P, Siemens  J, Hamer  M, Amelung  W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere, 2013, 91(6): 725–732
https://doi.org/10.1016/j.chemosphere.2013.02.024 pmid: 23498059
3 Liu  C, Chang  V W, Gin  K Y. Environmental toxicity of PFCs: an enhanced integrated biomarker assessment and structure-activity analysis. Environmental Toxicology and Chemistry, 2013, 32(10): 2226–2233
https://doi.org/10.1002/etc.2306 pmid: 23765507
4 So  M K, Taniyasu  S, Yamashita  N, Giesy  J P, Zheng  J, Fang  Z, Im  S H, Lam  P K. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 2004, 38(15): 4056–4063
https://doi.org/10.1021/es049441z pmid: 15352441
5 Skutlarek  D, Exner  M, Farber  H. Perfluorinated surfactants in surface and drinking waters. Environmental Science and Pollution Research International, 2006, 13(5): 299–307
https://doi.org/10.1065/espr2006.07.326 pmid: 17067024
6 Jin  Y H, Liu  W, Sato  I, Nakayama  S F, Sasaki  K, Saito  N, Tsuda  S. PFOS and PFOA in environmental and tap water in China. Chemosphere, 2009, 77(5): 605–611
https://doi.org/10.1016/j.chemosphere.2009.08.058 pmid: 19775722
7 Moody  C A, Martin  J W, Kwan  W C, Muir  D C G, Mabury  S A. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environmental Science & Technology, 2002, 36(4): 545–551
https://doi.org/10.1021/es011001+ pmid: 11883418
8 Zhou  Q, Pan  G, Shen  W. Enhanced sorption of perfluorooctane sulfonate and Cr(VI) on organo montmorillonite: influence of solution pH and uptake mechanism. Adsorption, 2013, 19(2−4): 709–715
https://doi.org/10.1007/s10450-013-9496-5
9 Chen  X, Xia  X, Wang  X, Qiao  J, Chen  H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 2011, 83(10): 1313–1319
https://doi.org/10.1016/j.chemosphere.2011.04.018 pmid: 21531440
10 Pan  G, Jia  C, Zhao  D, You  C, Chen  H, Jiang  G. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution, 2009, 157(1): 325–330
https://doi.org/10.1016/j.envpol.2008.06.035 pmid: 18722698
11 Du  Z, Deng  S, Bei  Y, Huang  Q, Wang  B, Huang  J, Yu  G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. Journal of Hazardous Materials, 2014, 274: 443–454
https://doi.org/10.1016/j.jhazmat.2014.04.038 pmid: 24813664
12 Mota  L C, Ureña-Benavides  E E, Yoon  Y, Son  A. Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres. Environmental Science & Technology, 2013, 47(1): 493–501
https://doi.org/10.1021/es303671u pmid: 23214724
13 Liu  H H, Cohen  Y. Multimedia environmental distribution of engineered nanomaterials. Environmental Science & Technology, 2014, 48(6): 3281–3292
https://doi.org/10.1021/es405132z pmid: 24548277
14 Chen  W, Duan  L, Zhu  D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 2007, 41(24): 8295–8300
https://doi.org/10.1021/es071230h pmid: 18200854
15 Zhao  J, Wang  Z, Mashayekhi  H, Mayer  P, Chefetz  B, Xing  B. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique. Environmental Science & Technology, 2012, 46(10): 5369–5377
https://doi.org/10.1021/es2044773 pmid: 22519404
16 Wang  X L, Liu  Y, Tao  S, Xing  B S. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon, 2010, 48(13): 3721–3728
https://doi.org/10.1016/j.carbon.2010.06.034
17 Yang  K, Xing  B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 2010, 110(10): 5989–6008
https://doi.org/10.1021/cr100059s pmid: 20518459
18 Zhou  Y, Wen  B, Pei  Z, Chen  G, Lv  J, Fang  J, Shan  X, Zhang  S. Coadsorption of copper and perfluorooctane sulfonate onto multi-walled carbon nanotubes. Chemical Engineering Journal, 2012, 203: 148–157
https://doi.org/10.1016/j.cej.2012.06.156
19 Kwadijk  C J A F, Velzeboer  I, Koelmans  A A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments. Chemosphere, 2013, 90(5): 1631–1636
https://doi.org/10.1016/j.chemosphere.2012.08.041 pmid: 23041036
20 Li  X, Chen  S, Quan  X, Zhang  Y. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 2011, 45(19): 8498–8505
https://doi.org/10.1021/es202026v pmid: 21861476
21 Li  X, Pignatello  J J, Wang  Y, Xing  B. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology, 2013, 47(15): 8334–8341
pmid: 23799778
22 Deng  S, Zhang  Q, Nie  Y, Wei  H, Wang  B, Huang  J, Yu  G, Xing  B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 2012, 168: 138–144
https://doi.org/10.1016/j.envpol.2012.03.048 pmid: 22610037
23 Bei  Y, Deng  S, Du  Z, Wang  B, Huang  J, Yu  G. Adsorption of perfluorooctane sulfonate on carbon nanotubes: influence of pH and competitive ions. Water Science and Technology, 2014, 69(7): 1489–1495
https://doi.org/10.2166/wst.2014.049 pmid: 24718341
24 Meng  P, Deng  S, Lu  X, Du  Z, Wang  B, Huang  J, Wang  Y, Yu  G, Xing  B. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. Environmental Science & Technology, 2014, 48(23): 13785–13792
https://doi.org/10.1021/es504108u pmid: 25365738
25 Ho  Y S, Mckay  G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
https://doi.org/10.1016/S0032-9592(98)00112-5
26 Kissa  E. Fluorinated Surfactants and Repellents. New York: CRC Press, 2001
27 Li  Y H, Di  Z, Ding  J, Wu  D, Luan  Z, Zhu  Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609
https://doi.org/10.1016/j.watres.2004.11.004 pmid: 15707633
28 Pan  B, Xing  B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013
https://doi.org/10.1021/es801777n pmid: 19174865
29 Carter  M C, Kilduff  J E, Weber  W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science & Technology, 1995, 29(7): 1773–1780
https://doi.org/10.1021/es00007a013 pmid: 22176449
30 Wang  F, Shih  K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Research, 2011, 45(9): 2925–2930
https://doi.org/10.1016/j.watres.2011.03.007 pmid: 21453951
31 Yu  Q, Zhang  R, Deng  S, Huang  J, Yu  G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Research, 2009, 43(4): 1150–1158
https://doi.org/10.1016/j.watres.2008.12.001 pmid: 19095279
32 Zhang  Q, Deng  S, Yu  G, Huang  J. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresource Technology, 2011, 102(3): 2265–2271
https://doi.org/10.1016/j.biortech.2010.10.040 pmid: 21044835
33 Yu  Q, Deng  S, Yu  G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research, 2008, 42(12): 3089–3097
https://doi.org/10.1016/j.watres.2008.02.024 pmid: 18374386
34 Lin  D, Xing  B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 2008, 42(19): 7254–7259
https://doi.org/10.1021/es801297u pmid: 18939555
35 Chiou  C T, Freed  V H, Schmedding  D W, Kohnert  R L. Partition coefficient and bioaccumulation of selected organic chemicals. Environmental Science & Technology, 1977, 11(5): 475–478
https://doi.org/10.1021/es60128a001
[1] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[2] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[3] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[4] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[5] Huan HE,Qian SUI,Shuguang LU,Wentao ZHAO,Zhaofu QIU,Gang YU. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
[6] Yu YANG,Zhicheng YU,Takayuki NOSAKA,Kyle DOUDRICK,Kiril HRISTOVSKI,Pierre HERCKES,Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
[7] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[8] Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor[J]. Front. Environ. Sci. Eng., 2015, 9(5): 879-887.
[9] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[10] Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
[11] Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 105-111.
[12] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[13] Yuning YANG,Huan LI,Jinyi LI. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods[J]. Front. Environ. Sci. Eng., 2014, 8(6): 854-862.
[14] TANG Chengli,YAN Wei,ZHENG Chunli. Electrochemical oxidation of humic acid at the antimony- and nickel-doped tin oxide electrode[J]. Front.Environ.Sci.Eng., 2014, 8(3): 337-344.
[15] LIU Hanchao,FENG Suping,ZHANG Nannan,DU Xiaolin,LIU Yongli. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid[J]. Front.Environ.Sci.Eng., 2014, 8(3): 329-336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed