Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 253-261    https://doi.org/10.1007/s11783-015-0791-0
RESEARCH ARTICLE
Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation
Xiaona WEI1,2,Shuhai GUO1,*(),Bo WU1,Fengmei LI1,Gang LI1
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(730 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A soil remediation method combining in situ reduction of Cr(VI) with approaching anodes electrokinetic (AAs-EK) remediation is proposed. EK experiments were conducted to compare the effect of approaching anodes (AAs) and fixed electrodes (FEs) with and without sodium bisulfite (NaHSO3) as a reducing agent. When NaHSO3 was added to the soil before EK treatment, 90.3% of the Cr(VI) was reduced to Cr(III). EK experiments showed that the adverse effect of contrasting migration of Cr(III) and Cr(VI) species, which limits the practical application of this technique, was eliminated in the presence of the reducing agent. Furthermore, Tessier fractionation analysis indicated that the reducing agent changed the distribution of the chemical forms of Cr. The AAs-EK method was shown to acidize the soil as the anode moved toward the cathode and this acid front pushed the “focusing” region toward the cathode. After remediation, the pH of the soil was between 1.8 and 5.0 in AAs-EK experiments. The total Cr removal efficiency was 64.4% (except in the “focusing” region) when the reduction reaction was combined with AAs-EK method. We conclude that AAs-EK remediation in the presence of NaHSO3 is an appropriate method for Cr-contaminated soil.

Keywords chromium      reduction reaction      contrasting migration      approaching anode      electrokinetic     
Corresponding Author(s): Shuhai GUO   
Online First Date: 14 May 2015    Issue Date: 01 February 2016
 Cite this article:   
Xiaona WEI,Shuhai GUO,Bo WU, et al. Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 253-261.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0791-0
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/253
pH organic content/% soil texture /% cation exchange capacity /(cmol·kg−1) acid buffering capacity /(cmol·kg−1) CO 3 2 /%
<2 μm 2–20 μm >20 μm
7.2 1.9 37.9 46.3 15.8 17.9 48.5 5.5
Tab.1  Composition and properties of tested soil
Fig.1  Schematic diagram of the EK apparatus
test contaminant treatment voltage gradient electrolyte
A Crtotal:905.7mg·kg−1Cr(VI):111.4 mg·kg−1 fixed electrodes 1.0 V·cm−1 distilled water
B reduced by 0.5% (w/w) NaHSO3 before EK+ fixed electrodes
C approaching anodes
D reduced by 0.5% (w/w) NaHSO3 before EK+ approaching anodes
Tab.2  Initial conditions for electrokinetic experiments
Fig.2  Changes in electrical currents over time within each experiment
Fig.3  Changes in soil pH during the EK treatment in (a) test A, (b) test B, (c) test C, (d) test D
Fig.4  Variation of Cr chemical fractionation after reduction
Fig.5  Residual total Cr after EK treatment
Fig.6  Time dependent distribution of total Cr during EK remediation in (a) test A, (b) test B, (c) test C, (d) test D
1 Probstein  R F, Hicks  R E. Removal of contaminants from soils by electric fields. Science, 1993, 260(5107): 498–503
https://doi.org/10.1126/science.260.5107.498 pmid: 17830427
2 Acar  Y B, Alshawabkeh  A N. Principles of electrokinetic remediation. Environmental Science & Technology, 1993, 27(13): 2638–2647
https://doi.org/10.1021/es00049a002
3 Virkutyte  J, Sillanpää  M, Latostenmaa  P. Electrokinetic soil remediation—critical overview. The Science of the Total Environment, 2002, 289(1−3): 97–121
https://doi.org/10.1016/S0048-9697(01)01027-0 pmid: 12049409
4 Villen-Guzman  M, Paz-Garcia  J M, Rodriguez-Maroto  J M, Gomez-Lahoz  C, Garcia-Herruzo  F. Acid enhanced electrokinetic remediation of a contaminated soil using constant current density: strong vs. weak acid. Separation Science and Technology, 2014, 49(10): 1461–1468
https://doi.org/10.1080/01496395.2014.898306
5 Li  D, Niu  Y Y, Fan  M, Xu  D L, Xu  P. Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium (VI)-contaminated soil. Separation and Purification Technology, 2013, 120: 52–58
https://doi.org/10.1016/j.seppur.2013.09.018
6 Li  D, Xiong  Z, Nie  Y, Niu  Y Y, Wang  L, Liu  Y Y. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil. Journal of Hazardous Materials, 2012, 229−230: 282–291
https://doi.org/10.1016/j.jhazmat.2012.05.107 pmid: 22738769
7 Li  G, Guo  S H, Li  S C, Zhang  L Y, Wang  S S. Comparison of approaching and fixed anodes for avoiding the “focusing” effect during electrokinetic remediation of chromium-contaminated soil. Chemical Engineering Journal, 2012, 203(9): 231–238
https://doi.org/10.1016/j.cej.2012.07.008
8 Niu  Y Y. Generation and impact of focusing band on the electrokinetic remediation of chromium-contaminated soil. Dissertation for the Doctoral Degree. Chongqing: Chongqing University, 2013 (in Chinese)
9 Kim  B K, Baek  K, Ko  S H, Yang  J W. Research and field experiences on electrokinetic remediation in South Korea. Separation and Purification Technology, 2011, 79(2): 116–123
https://doi.org/10.1016/j.seppur.2011.03.002
10 Ryu  B G, Park  G Y, Yang  J W, Baek  K. Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Separation and Purification Technology, 2011, 79(2): 170–176
https://doi.org/10.1016/j.seppur.2011.02.025
11 Saeedi  M, Li  L Y, Gharehtapeh  A M. Effect of alternative electrolytes on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. International Journal of Environmental of Research, 2013, 7(1): 39–50
12 Li  S C, Li  T T, Li  G, Li  F M, Guo  S H. Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes. Frontiers of Environmental Science & Engineering, 2012, 6(6): 869–874
https://doi.org/10.1007/s11783-012-0437-4
13 Duffus  J H. Chemical speciation terminology: chromium chemistry and cancer. Mineralogical Magazine, 2005, 69(5): 557–562
https://doi.org/10.1180/0026461056950270
14 Zhang  W, Zhuang  L, Tong  L, Lo  I M C, Qiu  R. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium. Chemosphere, 2012, 86(8): 809–816
https://doi.org/10.1016/j.chemosphere.2011.11.042 pmid: 22197017
15 Reddy  K R, Chinthamreddy  S. Effects of initial form of chromium on electrokinetic remediation in clays. Advances in Environmental Research, 2003, 7(2): 353–365
https://doi.org/10.1016/S1093-0191(02)00005-9
16 Su  C, Ludwig  R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology, 2005, 39(16): 6208–6216
https://doi.org/10.1021/es050185f pmid: 16173583
17 Sahinkaya  E, Kilic  A, Altun  M, Komnitsas  K, Lens  P N. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor. Journal of Hazardous Materials, 2012, 219−220: 253–259
https://doi.org/10.1016/j.jhazmat.2012.04.002 pmid: 22521797
18 Zhang  J, Xu  Y, Li  W, Zhou  J, Zhao  J, Qian  G, Xu  Z P. Enhanced remediation of Cr(VI)-contaminated soil by incorporating a calcined-hydrotalcite-based permeable reactive barrier with electrokinetics. Journal of Hazardous Materials, 2012, 239−240: 128–134
https://doi.org/10.1016/j.jhazmat.2012.08.039 pmid: 22985820
19 Weng  C H, Lin  Y T, Lin  T Y, Kao  C M. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Journal of Hazardous Materials, 2007, 149(2): 292–302
https://doi.org/10.1016/j.jhazmat.2007.03.076 pmid: 17485164
20 Franco  D V, Da Silva  L M, Jardim  W F. Chemical reduction of hexavalent chromium and its immobilisation under batch conditions using a slurry reactor. Water, Air, and Soil Pollution, 2009, 203(1−4): 305–315
https://doi.org/10.1007/s11270-009-0013-0
21 Reddy  K R, Chinthamreddy  S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Management (New York, N.Y.), 1999, 19(4): 269–282
https://doi.org/10.1016/S0956-053X(99)00085-9
22 Beukes  J, Pienaar  J, Lachmann  G, Giesekke  E. The reduction of hexavalent chromium by sulphite in wastewater. Water SA., 1999, 25(3): 363–370
23 Pettine  M, Tonnina  D, Millero  F J. Chromium(VI) reduction by sulphur(IV) in aqueous solutions. Marine Chemistry, 2006, 99(1−4): 31–41
https://doi.org/10.1016/j.marchem.2005.02.003
24 Dhal  B, Thatoi  H N, Das  N N, Pandey  B D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 2013, 250−251: 272–291
https://doi.org/10.1016/j.jhazmat.2013.01.048 pmid: 23467183
25 Sun  T R, Pamukcu  S, Ottosen  L M, Wang  F. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: kinetics, energy consumption, and application of pulse current. Chemical Engineering Journal, 2015, 262(2): 1099–1107
https://doi.org/10.1016/j.cej.2014.10.081
26 Lu  R K. Mehtods of Soil and Agricultural Chemistry Analysis. Beijing: Science Press, Agricultural Science and Technology Publishing House, 2000 (in Chinese)
27 USEPA. Method 3060A Alkaline Digestion for Hexavalent Chromium. Revision 1.Washington DC: US Government Printing, 1996
28 Tessier  A, Campbell  P G C, Bisson  M. Sequential extraction procedure for the speciation of particulate trace-metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
29 Reddy  K R, Parupudi  U S, Devulapalli  S N, Xu  C Y. Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, 1997, 55(1−3): 135–158
https://doi.org/10.1016/S0304-3894(97)00020-4
30 Shen  Z, Chen  X, Jia  J, Qu  L, Wang  W. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution, 2007, 150(2): 193–199
https://doi.org/10.1016/j.envpol.2007.02.004 pmid: 17376568
31 Cang  L, Zhou  D M, Alshawabkeh  A N, Chen  H F. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. Journal of Hazardous Materials, 2007, 142(1−2): 111–117
https://doi.org/10.1016/j.jhazmat.2006.07.067 pmid: 16956724
32 Kumar  V, Chithra  K. Removal of Cr (VI) from spiked soils by electrokinetics. Research Journal of Chemistry and Environment, 2013, 17(8): 52–59
33 Alshawabkeh  A N. Electrokinetic soil remediation: challenges and opportunities. Separation Science and Technology, 2009, 44(10): 2171–2187
https://doi.org/10.1080/01496390902976681
34 Buchireddy  P R, Bricka  R M, Gent  D B. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. Journal of Hazardous Materials, 2009, 162(1): 490–497
https://doi.org/10.1016/j.jhazmat.2008.05.092 pmid: 18599200
[1] Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang. Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process[J]. Front. Environ. Sci. Eng., 2021, 15(6): 113-.
[2] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[3] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[4] Haizhou Liu, Xuejun Yu. Hexavalent chromium in drinking water: Chemistry, challenges and future outlook on Sn(II)- and photocatalyst-based treatment[J]. Front. Environ. Sci. Eng., 2020, 14(5): 88-.
[5] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[6] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[7] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[8] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[9] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[10] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
[11] DING Wenchuan,PENG Wenlong,ZENG Xiaolan,TIAN Xiumei. Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar[J]. Front.Environ.Sci.Eng., 2014, 8(3): 379-385.
[12] Shucai LI, Tingting LI, Gang LI, Fengmei LI, Shuhai GUO. Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes[J]. Front Envir Sci Eng, 2012, 6(6): 869-874.
[13] Yin WANG, Xuejiang WANG, Xin WANG, Mian LIU, Siqing XIA, Daqiang YIN, Yalei ZHANG, Jianfu ZHAO. Reduction of hexavalent chromium with scrap iron in a fixed bed reactor[J]. Front Envir Sci Eng, 2012, 6(6): 761-769.
[14] Jay N. MEEGODA, Wiwat KAMOLPORNWIJIT. Chromium steel from chromite ore processing residue----A valuable construction material from a waste[J]. Front Envir Sci Eng Chin, 2011, 5(2): 159-166.
[15] Qian YAO, Hua ZHANG, Jun WU, Liming SHAO, Pinjing HE, . Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies[J]. Front.Environ.Sci.Eng., 2010, 4(3): 286-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed