Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 531-538    https://doi.org/10.1007/s11783-015-0793-y
RESEARCH ARTICLE
Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers
Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU()
CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
 Download: PDF(2036 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Modification of electrode surface with carboxylic acid terminated alkanethiol self-assembled monolayers (SAMs) has been found to be an effective approach to improve the extracellular electron transfer (EET) of electrochemically active bacteria (EAB) on electrode surface, but the underlying mechanism behind such enhanced EET remains unclear. In this work, the gold electrodes modified by mercapto-acetic acid and mercapto-ethylamine (Au-COOH, Au-NH2) were used as anodes in microbial electrolysis cells (MECs) inoculated with Geobacter sulfurreducens DL-1, and their electrochemical performance and the bacteria-electrode interactions were investigated. Results showed that the Fe(CN)63-/4- redox reaction occurred on the Au-NH2 with a higher rate and a lower resistance than that on the Au or the Au-COOH. Both the MECs with the Au-COOH and Au-NH2 anodes exhibited a higher current density than that with a bare Au anode. The biofilm formed on the Au-COOH was denser than that on bare Au, while the biofilm on the Au-NH2 had a greater thickness, suggesting a critical role of direct EET in this system. This work suggests that functional groups such as –COOH and-NH2 could promote electrode performance by accelerating the direct EET of EAB on electrode surface.

Keywords biofilm      extracellular electron transfer (EET)      Geobacter sulfurreducens DL-1      gold      self-assembled monolayers     
Corresponding Author(s): Hanqing YU   
Online First Date: 02 June 2015    Issue Date: 05 April 2016
 Cite this article:   
Feng ZHANG,Shengsong YU,Jie LI, et al. Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers[J]. Front. Environ. Sci. Eng., 2016, 10(3): 531-538.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0793-y
https://academic.hep.com.cn/fese/EN/Y2016/V10/I3/531
Fig.1  Current densities of the MECs with the different Au-based electrodes. The inset illustrate the initial 2 h of the result
Fig.2  (a) CVs, and (b) Nyquist plots and equivalent circuit of the Au, Au-COOH and Au-NH2 electrodes in 5 mmol·L-1 Fe ( CN ) 6 3 - / 4 - in 1/15 mol·L-1 phosphate buffer saline solution (pH= 7.0)
Fig.3  Background-subtraction CV curves of the different electrodes in the MECs
Fig.4  SEM images of G. sulfurreducens DL-1 biofilms on the surface of Au ((a) and (c)), Au-COOH ((b) and (d)) and Au-NH2 electrodes ((e) and (f))
Fig.5  CLSM images of G. sulfurreducens DL-1 biofilms on the surface of Au (a), Au-COOH (b) and Au-NH2 electrodes (c)
1 Rittmann B E, Krajmalnik-Brown R, Halden R U. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews. Microbiology, 2008, 6(8): 604-612
https://doi.org/10.1038/nrmicro1939 pmid: 18604223
2 Ishii S, Suzuki S, Norden-Krichmar T M, Tenney A, Chain P S G, Scholz M B, Nealson K H, Bretschger O. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nature Communications, 2013, 4: 1601
https://doi.org/10.1038/ncomms2615 pmid: 23511466
3 Yuan S J, Li W W, Cheng Y Y, He H, Chen J J, Tong Z H, Lin Z Q, Zhang F, Sheng G P, Yu H Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protocols, 2014, 9(1): 112-119
https://doi.org/10.1038/nprot.2013.173 pmid: 24356770
4 Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology, 2009, 7(5): 375-381
https://doi.org/10.1038/nrmicro2113 pmid: 19330018
5 Zang G L, Sheng G P, Tong Z H, Liu X W, Teng S X, Li W W, Yu H Q. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environmental Science & Technology, 2010, 44(7): 2715-2720
https://doi.org/10.1021/es902956e pmid: 20225844
6 Sun M, Zhang F, Tong Z H, Sheng G P, Chen Y Z, Zhao Y, Chen Y P, Zhou S Y, Liu G, Tian Y C, Yu H Q. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors & Bioelectronics, 2010, 26(2): 338-343
https://doi.org/10.1016/j.bios.2010.08.010 pmid: 20801013
7 Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N, Wu W M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering, 2012, 6(4): 569-574
https://doi.org/10.1007/s11783-011-0335-1
8 Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295(5554): 483-485
https://doi.org/10.1126/science.1066771 pmid: 11799240
9 Kouzuma A, Hashimoto K, Watanabe K. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiology Letters, 2012, 326(1): 91-98
https://doi.org/10.1111/j.1574-6968.2011.02444.x pmid: 22092340
10 Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34(1): 3-17
https://doi.org/10.1111/j.1574-6976.2009.00191.x pmid: 19895647
11 Liu H, Newton G J, Nakamura R, Hashimoto K, Nakanishi S. Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers. Angewandte Chemie International Edition, 2010, 49(37): 6596-6599
https://doi.org/10.1002/anie.201000315 pmid: 20680950
12 Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3968-3973
https://doi.org/10.1073/pnas.0710525105 pmid: 18316736
13 Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358-11363
https://doi.org/10.1073/pnas.0604517103 pmid: 16849424
14 Huang Y X, Liu X W, Xie J F, Sheng G P, Wang G Y, Zhang Y Y, Xu A W, Yu H Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical communications (Cambridge, England), 2011, 47(20): 5795-5797
https://doi.org/10.1039/c1cc10159e pmid: 21494723
15 Liu X W, Sun X F, Chen J J, Huang Y X, Xie J F, Li W W, Sheng G P, Zhang Y Y, Zhao F, Lu R, Yu H Q. Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system. Scientific Reports, 2013, 3: 1616
https://doi.org/10.1038/srep01616 pmid: 23563590
16 Crittenden S R, Sund C J, Sumner J J. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir, 2006, 22(23): 9473-9476
https://doi.org/10.1021/la061869j pmid: 17073464
17 Lowy D A, Tender L M, Zeikus J G, Park D H, Lovley D R. Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. Biosensors & Bioelectronics, 2006, 21(11): 2058-2063
https://doi.org/10.1016/j.bios.2006.01.033 pmid: 16574400
18 Stams A J M, de Bok F A M, Plugge C M, van Eekert M H A, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 2006, 8(3): 371-382
https://doi.org/10.1111/j.1462-2920.2006.00989.x pmid: 16478444
19 Tarlov M J, Bowden E F. Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. Journal of the American Chemical Society, 1991, 113(5): 1847-1849
https://doi.org/10.1021/ja00005a068
20 Chen X, Ferrigno R, Yang J, Whitesides G M. Redox properties of cytochrome c adsorbed on self-sssembled monolayers: a probe for protein conformation and orientation. Langmuir, 2002, 18(18): 7009-7015
https://doi.org/10.1021/la0204794
21 Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir, 2001, 17(20): 6336-6343
https://doi.org/10.1021/la010552a
22 Wang G M, Qian F, Saltikov C, Jiao Y Q, Li Y. Microbial reduction of graphene oxide by Shewanella. Nano Research, 2011, 4(6): 563-570
https://doi.org/10.1007/s12274-011-0112-2
23 Richter H, McCarthy K, Nevin K P, Johnson J P, Rotello V M, Lovley D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir, 2008, 24(8): 4376-4379
https://doi.org/10.1021/la703469y pmid: 18303924
24 Wang H T, Zhao H M, Quan X. Gold modified microelectrode for direct tetracycline detection. Frontiers of Environmental Science & Engineering, 2012, 6(3): 313-319
https://doi.org/10.1007/s11783-011-0323-5
25 Liu S Y, Liu G, Tian Y C, Chen Y P, Yu H Q, Fang F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environmental Science & Technology, 2007, 41(15): 5447-5452
https://doi.org/10.1021/es070532g pmid: 17822115
26 Bain C D, Troughton E B, Tao Y T, Evall J, Whitesides G M, Nuzzo R G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989, 111(1): 321-335
https://doi.org/10.1021/ja00183a049
27 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd ed. New York: Wiley, 2001
28 Khan M M T, Ista L K, Lopez G P, Schuler A J. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers. Environmental Science & Technology, 2011, 45(3): 1055-1060
https://doi.org/10.1021/es101389u pmid: 21189005
[1] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[2] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[3] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[4] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[5] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[6] Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16-.
[7] Yu Qi, Jin Li, Rui Liang, Sitong Ji, Jianxiang Li, Meng Liu. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 14-.
[8] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[9] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[10] Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar. Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor[J]. Front. Environ. Sci. Eng., 2016, 10(4): 16-.
[11] Yanling WEI,Xunfei YIN,Lu QI,Hongchen WANG,Yiwei GONG,Yaqian LUO. Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor[J]. Front. Environ. Sci. Eng., 2016, 10(3): 569-577.
[12] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[13] Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA. Performance of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasses wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(4): 598-606.
[14] Hailiang SONG, Xianning LI, Wei LI, Xiwu LU. Role of biologic components in a novel floating-bed combining Ipomoea aquatic, Corbicula fluminea and biofilm carrier media[J]. Front Envir Sci Eng, 2014, 8(2): 215-225.
[15] Zhuoying WU, Qing WANG, Feng GUO, Shenghua ZHANG, Qipei JIANG, Xin YU. Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones and their analogs during biofilm formation[J]. Front Envir Sci Eng, 2014, 8(2): 205-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed