Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 929-938    https://doi.org/10.1007/s11783-015-0795-9
RESEARCH ARTICLE
Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands
Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA()
Environmental Engineering Program, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA
 Download: PDF(1859 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

Keywords ion exchange      sorption      arsenic      perchlorate      fluoride     
Corresponding Author(s): Arup K. SENGUPTA   
Online First Date: 16 June 2015    Issue Date: 12 October 2015
 Cite this article:   
Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON, et al. Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands[J]. Front. Environ. Sci. Eng., 2015, 9(5): 929-938.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0795-9
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/929
Fig.1  (a) Depiction of synergy between polymeric ion exchangers and metal oxide nanoparticles; (b) depiction of Donnan Membrane Effect for anion exchange resin; and (c) Depiction of Donnan Membrane Effect for cation exchange resin
Fig.2  (a) Depiction of dual sorption sites for hybrid anion exchange fibers; (b) fiber materials photographed at 10× magnification; (c) SEM photograph at 2000× of a single fiber
Fig.3  SEM images of (a) parent ion exchange resin and (b) HAIX-Zr at 90×, 5000×, and 15000× magnification
Fig.4  Effluent history for three different types of ion exchange resin loaded with HFO
Fig.5  Breakthrough curves for arsenic and copper for (a) granular ferric hydroxide; (b) HFO-loaded cation exchange resin; (c) HFO-loaded anion exchange resin
Fig.6  (a) TEM image of HFO impregnated ion exchange fibers; (b) energy dispersive X-ray mapping of HFO impregnated ion exchange fiber; (c) removal kinetics for arsenic and perchlorate by HFO-loaded anion exchange fibers and resin beads
Fig.7  (a) Effluent history of HAIX-F column run for arsenate and perchlorate; (b) regeneration effluent depicting effective separation of arsenate and perchlorate waste streams
Fig.8  (a) Removal of fluoride using HAIX-Zr with feedwater from Nakuru, Kenya; (b) regeneration of exhausted HAIX-Zr with high fluoride recovery
1 Trivedi  P, Axe  L. Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science & Technology, 2000, 34(11): 2215–2223
https://doi.org/10.1021/es991110c
2 Trivedi  P, Axe  L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environmental Science & Technology, 2001, 35(9): 1779–1784
https://doi.org/10.1021/es001644+ pmid: 11355192
3 Dixit  S, Hering  J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 2003, 37(18): 4182–4189
https://doi.org/10.1021/es030309t pmid: 14524451
4 Dou  X, Mohan  D, Pittman  C U Jr, Yang  S. Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal, 2012, 198−199: 236–245
https://doi.org/10.1016/j.cej.2012.05.084
5 Li  Z, Deng  S, Zhang  X, Zhou  W, Huang  J, Yu  G. Removal of fluoride from water using titanium-based adsorbents. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 414–420
https://doi.org/10.1007/s11783-010-0241-y
6 Xu  W, Wang  J, Wang  L, Sheng  G, Liu  J, Yu  H, Huang  X J. Enhanced arsenic removal from water by hierarchically porous CeO?-ZrO? nanospheres: role of surface- and structure-dependent properties. Journal of Hazardous Materials, 2013, 260: 498–507
https://doi.org/10.1016/j.jhazmat.2013.06.010 pmid: 23811372
7 Zheng  J, Chen  K H, Yan  X, Chen  S J, Hu  G C, Peng  X W, Yuan  J G, Mai  B X, Yang  Z Y. Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicology and Environmental Safety, 2013, 96: 205–212
https://doi.org/10.1016/j.ecoenv.2013.06.017 pmid: 23849468
8 Wongsasuluk  P, Chotpantarat  S, Siriwong  W, Robson  M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 2014, 36(1): 169–182
https://doi.org/10.1007/s10653-013-9537-8 pmid: 23771812
9 Rahman  M M, Ng  J C, Naidu  R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 2009, 31(S1 Suppl 1): 189–200
https://doi.org/10.1007/s10653-008-9235-0 pmid: 19190988
10 Greer  M A, Goodman  G, Pleus  R C, Greer  S E. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environmental Health Perspectives, 2002, 110(9): 927–937
https://doi.org/10.1289/ehp.02110927 pmid: 12204829
11 Wambu  E W, Agong  S G, Anyango  B, Akuno  W, Akenga  T. High fluoride water in Bondo-Rarieda area of Siaya County, Kenya: a hydro-geological implication on public health in the Lake Victoria Basin. BMC Public Health, 2014, 14(1): 462–469
https://doi.org/10.1186/1471-2458-14-462 pmid: 24884434
12 Jang  M, Chen  W, Cannon  F S. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environmental Science & Technology, 2008, 42(9): 3369–3374
https://doi.org/10.1021/es7025399 pmid: 18522120
13 Min  J H, Hering  J G. Arsenate sorption by Fe(III)-doped alginate gels. Water Research, 1998, 32(5): 1544–1552
https://doi.org/10.1016/S0043-1354(97)00349-7
14 Zouboulis  A I, Katsoyiannis  I A. Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research, 2002, 41(24): 6149–6155
https://doi.org/10.1021/ie0203835
15 Miller  S M, Zimmerman  J B. Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research, 2010, 44(19): 5722–5729
https://doi.org/10.1016/j.watres.2010.05.045 pmid: 20594571
16 DeMarco  M J, SenGupta  A K, Greenleaf  J E. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 2003, 37(1): 164–176
https://doi.org/10.1016/S0043-1354(02)00238-5 pmid: 12465798
17 Cumbal  L, Sengupta  A K. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environmental Science & Technology, 2005, 39(17): 6508–6515
https://doi.org/10.1021/es050175e pmid: 16190206
18 Padungthon  S, Li  J, German  M, SenGupta  A K. Hybrid anion exchanger with dispersed zirconium oxide nanoparticles: a durable and reusable fluoride-selective sorbent. Environmental Engineering Science, 2014, 31(7): 360–372
https://doi.org/10.1089/ees.2013.0412
19 Pan  B, Qiu  H, Pan  B, Nie  G, Xiao  L, Lv  L, Zhang  W, Zhang  Q, Zheng  S. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. Water Research, 2010, 44(3): 815–824
https://doi.org/10.1016/j.watres.2009.10.027 pmid: 19906397
20 Zhang  Q, Pan  B, Zhang  W, Pan  B, Zhang  Q, Ren  H. Arsenate removal from aqueous media by nanosized hydrated ferric oxide (HFO)-loaded polymeric sorbents: effect of HFO loadings. Industrial & Engineering Chemistry Research, 2008, 47(11): 3957–3962
https://doi.org/10.1021/ie800275k
21 Zhao  D, SenGupta  A K. Selective removal and recovery of phosphate in a novel fixed-bed process. Water Science and Technology, 1996, 33(10−11): 139–147
https://doi.org/10.1016/0273-1223(96)00415-5
22 Puttamraju  P, SenGupta  A K. Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: role of ion exchanger support. Industrial & Engineering Chemistry Research, 2006, 45(22): 7737–7742
https://doi.org/10.1021/ie060803g
23 Smith  R C, SenGupta  A K. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination. Environmental Science & Technology, 2015, 49(9): 5637–5644
https://doi.org/10.1021/es505439p pmid: 25839209
24 Greenleaf  J E, Cumbal  L, Staina  I, SenGupta  A K. Abiotic As(III) oxidation by hydrated Fe(III) oxide (HFO) microparticles in a plug flow columnar configuration. Process Safety and Environmental Protection, 2003, 81(2): 87–98
https://doi.org/10.1205/095758203321832552
25 Li  P, SenGupta  A K. Sorption of hydrophobic ionizable organic compounds (HIOCs) onto polymeric ion exchangers. Reactive & Functional Polymers, 2004, 60: 27–39
https://doi.org/10.1016/j.reactfunctpolym.2004.02.008
26 Sarkar  S, SenGupta  A K, Prakash  P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environmental Science & Technology, 2010, 44(4): 1161–1166
https://doi.org/10.1021/es9024029 pmid: 20092307
27 Donnan  F G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science, 1995, 100(1): 45–55
https://doi.org/10.1016/0376-7388(94)00297-C
28 Li  P, SenGupta  A K. Intraparticle diffusion during selective ion exchange with a macroporous exchanger. Reactive & Functional Polymers, 2000, 44(3): 273–287
https://doi.org/10.1016/S1381-5148(99)00103-0
29 Sarkar  S, Blaney  L M, Gupta  A, Ghosh  D, SenGupta  A K. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive & Functional Polymers, 2007, 67(12): 1599–1611
https://doi.org/10.1016/j.reactfunctpolym.2007.07.047
30 SenGupta  A K, Cumbal  L H. Hybrid anion exchanger for selective removal of contaminating ligands from fluids and method of manufacture thereof. US Patent, 7 291 578, 2007−<month>11</month>−<day>6</day>
31 SenGupta  A K, Padungthon  S. Hybrid anion exchanger impregnated with hydrated zirconium oxide for selective removal of contaminating ligand and methods of manufacture and use thereof. US Patent Application, 860 984, 2013−<month>10</month>−<day>17</day>
32 Tang  Y, Guan  X, Wang  J, Gao  N, McPhail  M R, Chusuei  C C. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions. Journal of Hazardous Materials, 2009, 171(1−<?Pub Caret?>3): 774–779
https://doi.org/10.1016/j.jhazmat.2009.06.079 pmid: 19616377
33 American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th Edition. Washington, DC: American Public Health Association, 1992
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Yameng Li, Ziyu Liang. The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic[J]. Front. Environ. Sci. Eng., 2020, 14(6): 94-.
[6] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[7] Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 85-.
[8] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[9] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[10] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[11] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[14] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[15] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed