Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 438-446
Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid
Minhui XU,Xiaogang GU,Shuguang LU(),Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO2-· was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl- had a negative effect on CT degradation, and high concentration of Cl- displayed much strong inhibition. Ten mmol·L-1HCO3- promoted CT degradation, while 100 mmol·L-1NO3- inhibited the degradation of CT, but SO42- promoted CT degradation in the presence of FA. The measured Cl- concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.

Keywords persulfate      carbon tetrachloride      thermal activation      formic acid      carbon dioxide radical anion     
Corresponding Authors: Shuguang LU   
Online First Date: 18 June 2015    Issue Date: 05 April 2016
 Cite this article:   
Minhui XU,Xiaogang GU,Shuguang LU, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 438-446.
Fig.1  CT degradation in the thermally activated PS system in the presence of FA (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.2  Effect of scavenger on CT degradation (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.3  Effect of dosages of PS and FA, and initial CT concentration on CT degradation. (a) PS (50°C, [CT]0 = 10 μmol·L-1, [FA] = 30 mmol·L-1); (b) FA (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1); (c) CT (50°C, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.4  Effect of initial solution pH on CT degradation. (a) Cl-; (b) H C O 3 - ; (c) N O 3 - ; (d) S O 4 2 - . (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
pH initial 30 min 90 min final (180 min)
unadjusted pH 2.59 2.52 2.45 2.33
pH= 3 3.02 2.97 2.85 2.61
pH= 6 5.98 4.86 4.44 3.50
pH= 9 8.90 5.16 4.64 3.50
pH= 12 12.00 11.97 11.92 11.86
Tab.1  pH variation along with reaction at different initial solution pH conditions
Fig.5  Effect of solution matrix on CT degradation (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.6  Performance of CT degradation versus PS decomposition and Cl- release. (50°C, [CT]0 = 0.1 mmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
1 Choi J, Choi K, Lee W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. Journal of Hazardous Materials, 2009, 162(2-3): 1151-1158 pmid: 18621480
2 TÁmara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology, 2004, 38(6): 1866-1876 pmid: 15074701
3 Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886
4 Gu X G, Lu S G, Li L, Qiu Z F, Sui Q, Lin K F, Luo Q S. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029-11036
5 Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9): 1213-1223 pmid: 15081762
6 Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental, 2013, 129(2): 325-332
7 Fang G, Gao J, Dionysiou D D, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 2013, 47(9): 4605-4611 pmid: 23586773
8 Ahmad M, Teel A L, Watts R J. Mechanism of persulfate activation by phenols. Environmental Science & Technology, 2013, 47(11): 5864-5871 pmid: 23663058
9 Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology, 2010, 71(3): 302-307
10 House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962, 62(3): 185-203
11 Pennington D E, Haim A. Stoichiometry and mechanism of the chromium(II)—peroxydisulfate reaction. Journal of the American Chemical Society, 2002, 90(14): 3700-3704
12 Peyton G R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 1993, 41(1-3): 91-103
13 Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society, 1951, 73(7): 3055-3059
14 Watts R J, Bottenberg B C, HessT F, Jensen M D, Teel A L. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environmental Science & Technology, 1999, 33(19): 3432-3437
15 Bielski B H, Cabelli D E, Arudi R L, Ross A B. Reactivity of HO2/O2- radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1985, 14(4): 1041-1100
16 Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination, 2003, 12(2): 207-228
17 Mora V C, Rosso J A, Carrillo Le Roux G, Mártire D O, Gonzalez M C. Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere, 2009, 75(10): 1405-1409 pmid: 19285704
18 Lin M Z, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroishi D. Pluse radiolysis of sodium formate aqueous solution up to 400°C: absorption spectra, kinetics and yield of carboxyl radical CO2-·. Radiation Physics and Chemistry, 2008, 77(10-12): 1208-1212
19 Liang C, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73(9): 1540-1543 pmid: 18922560
20 Xu M, Gu X, Lu S, Qiu Z, Sui Q, Miao Z, Zang X, Wu X. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials, 2015, 286: 7-14 pmid: 25544995
21 Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
22 Mulazzani Q G, D’Angelantonio M, Venturi M, Hoffman M Z, Rodgers M A. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. Journal of Physical Chemistry, 1986, 90(21): 5347-5352
23 Berkovic A M, Gonzalez M C, Russo N, Michelini M C, Pis Diez R, Mártire D O. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation. Journal of Physical Chemistry A, 2010, 114(49): 12845-12850 pmid: 21086971
24 Das T N, Ghanty T K, Pal H. Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: mechanism derived from pulse radiolysis measurements and ab initio mo calculations. Journal of Physical Chemistry A, 2003, 107(31): 5998-6006
25 Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238-1244 pmid: 17628631
26 Cooper W J, Cramer C J, Martin N H, Mezyk S P, O’Shea K E, von Sonntag C. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chemical Reviews, 2009, 109(3): 1302-1345 pmid: 19166337
27 Flyunt R, Schuchmann M N, von Sonntag C. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion, CO2-·, in aqueous solution. Chemistry (Weinheim an der Bergstrasse, Germany), 2001, 7(4): 796-799<796::AID-CHEM796>3.0.CO;2-J pmid: 11288870
28 Morkovinik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055-1075
29 Buxton G V, Bydder M, Salmon G A. The reactivity of chlorine atoms in aqueous solution, Part II. The reactivity of chlorine atoms in aqueous solution II: The equilibrium SO4-· + Cl- ↔SO42- + Cl•. Physical Chemistry Chemical Physics, 1999, 1(2): 269-273
30 Regino C A, Richardson D E. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 2007, 360(14): 3971-3977
31 Draganić Z D, Negrón-Mendoza A, Sehested K, Vujošević S I, Navarro-Gonzáles R, Albarrán-SanchezM G, Draganić I G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1991, 38(3): 317-321
32 Padmaja S, Neta P, Huie R E. Rate constants for some reactions of inorganic radicals with inorganic ions. Temperature and solvent dependence. International Journal of Chemical Kinetics, 1993, 25(6): 445-455
33 Neta P, Grodkowsk J, Ross A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1996, 25(3): 709-1050
34 McCormick M L, Adriaens P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology, 2004, 38(4): 1045-1053 pmid: 14998017
35 McCormick M L, Bouwer E J, Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environmental Science & Technology, 2002, 36(3): 403-410 pmid: 11871555
[1] Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(2): 6-.
[2] Qishi LUO. Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate[J]. Front Envir Sci Eng, 2014, 8(2): 188-194.
[3] Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN. A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells[J]. Front Envir Sci Eng, 2013, 7(3): 388-394.
[4] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[5] Yuchi LEE, Shanglien LO, Jeff KUO, Chinghong HSIEH. Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions[J]. Front Envir Sci Eng, 2012, 6(1): 17-25.
Full text