Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 438-446    https://doi.org/10.1007/s11783-015-0798-6
RESEARCH ARTICLE |
Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid
Minhui XU,Xiaogang GU,Shuguang LU(),Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO2-· was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl- had a negative effect on CT degradation, and high concentration of Cl- displayed much strong inhibition. Ten mmol·L-1HCO3- promoted CT degradation, while 100 mmol·L-1NO3- inhibited the degradation of CT, but SO42- promoted CT degradation in the presence of FA. The measured Cl- concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.

Keywords persulfate      carbon tetrachloride      thermal activation      formic acid      carbon dioxide radical anion     
Corresponding Authors: Shuguang LU   
Online First Date: 18 June 2015    Issue Date: 05 April 2016
 Cite this article:   
Minhui XU,Xiaogang GU,Shuguang LU, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 438-446.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0798-6
http://academic.hep.com.cn/fese/EN/Y2016/V10/I3/438
Fig.1  CT degradation in the thermally activated PS system in the presence of FA (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.2  Effect of scavenger on CT degradation (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.3  Effect of dosages of PS and FA, and initial CT concentration on CT degradation. (a) PS (50°C, [CT]0 = 10 μmol·L-1, [FA] = 30 mmol·L-1); (b) FA (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1); (c) CT (50°C, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.4  Effect of initial solution pH on CT degradation. (a) Cl-; (b) H C O 3 - ; (c) N O 3 - ; (d) S O 4 2 - . (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
pH initial 30 min 90 min final (180 min)
unadjusted pH 2.59 2.52 2.45 2.33
pH= 3 3.02 2.97 2.85 2.61
pH= 6 5.98 4.86 4.44 3.50
pH= 9 8.90 5.16 4.64 3.50
pH= 12 12.00 11.97 11.92 11.86
Tab.1  pH variation along with reaction at different initial solution pH conditions
Fig.5  Effect of solution matrix on CT degradation (50°C, [CT]0 = 10 μmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
Fig.6  Performance of CT degradation versus PS decomposition and Cl- release. (50°C, [CT]0 = 0.1 mmol·L-1, [PS] = 20 mmol·L-1, [FA] = 30 mmol·L-1)
1 Choi J, Choi K, Lee W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. Journal of Hazardous Materials, 2009, 162(2-3): 1151-1158
https://doi.org/10.1016/j.jhazmat.2008.06.007 pmid: 18621480
2 TÁmara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology, 2004, 38(6): 1866-1876
https://doi.org/10.1021/es0305508 pmid: 15074701
3 Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886
https://doi.org/10.1063/1.555805
4 Gu X G, Lu S G, Li L, Qiu Z F, Sui Q, Lin K F, Luo Q S. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029-11036
https://doi.org/10.1021/ie201059x
5 Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9): 1213-1223
https://doi.org/10.1016/j.chemosphere.2004.01.029 pmid: 15081762
6 Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental, 2013, 129(2): 325-332
https://doi.org/10.1016/j.apcatb.2012.09.042
7 Fang G, Gao J, Dionysiou D D, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 2013, 47(9): 4605-4611
https://doi.org/10.1021/es400262n pmid: 23586773
8 Ahmad M, Teel A L, Watts R J. Mechanism of persulfate activation by phenols. Environmental Science & Technology, 2013, 47(11): 5864-5871
https://doi.org/10.1021/es400728c pmid: 23663058
9 Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology, 2010, 71(3): 302-307
https://doi.org/10.1016/j.seppur.2009.12.010
10 House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962, 62(3): 185-203
https://doi.org/10.1021/cr60217a001
11 Pennington D E, Haim A. Stoichiometry and mechanism of the chromium(II)—peroxydisulfate reaction. Journal of the American Chemical Society, 2002, 90(14): 3700-3704
https://doi.org/10.1021/ja01016a017
12 Peyton G R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 1993, 41(1-3): 91-103
https://doi.org/10.1016/0304-4203(93)90108-Z
13 Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society, 1951, 73(7): 3055-3059
https://doi.org/10.1021/ja01151a024
14 Watts R J, Bottenberg B C, HessT F, Jensen M D, Teel A L. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environmental Science & Technology, 1999, 33(19): 3432-3437
https://doi.org/10.1021/es990054c
15 Bielski B H, Cabelli D E, Arudi R L, Ross A B. Reactivity of HO2/O2- radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1985, 14(4): 1041-1100
https://doi.org/10.1063/1.555739
16 Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination, 2003, 12(2): 207-228
https://doi.org/10.1080/713610970
17 Mora V C, Rosso J A, Carrillo Le Roux G, Mártire D O, Gonzalez M C. Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere, 2009, 75(10): 1405-1409
https://doi.org/10.1016/j.chemosphere.2009.02.038 pmid: 19285704
18 Lin M Z, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroishi D. Pluse radiolysis of sodium formate aqueous solution up to 400°C: absorption spectra, kinetics and yield of carboxyl radical CO2-·. Radiation Physics and Chemistry, 2008, 77(10-12): 1208-1212
https://doi.org/10.1016/j.radphyschem.2008.05.017
19 Liang C, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73(9): 1540-1543
https://doi.org/10.1016/j.chemosphere.2008.08.043 pmid: 18922560
20 Xu M, Gu X, Lu S, Qiu Z, Sui Q, Miao Z, Zang X, Wu X. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials, 2015, 286: 7-14
https://doi.org/10.1016/j.jhazmat.2014.12.031 pmid: 25544995
21 Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
https://doi.org/10.1063/1.555808
22 Mulazzani Q G, D’Angelantonio M, Venturi M, Hoffman M Z, Rodgers M A. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. Journal of Physical Chemistry, 1986, 90(21): 5347-5352
https://doi.org/10.1021/j100412a090
23 Berkovic A M, Gonzalez M C, Russo N, Michelini M C, Pis Diez R, Mártire D O. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation. Journal of Physical Chemistry A, 2010, 114(49): 12845-12850
https://doi.org/10.1021/jp106035m pmid: 21086971
24 Das T N, Ghanty T K, Pal H. Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: mechanism derived from pulse radiolysis measurements and ab initio mo calculations. Journal of Physical Chemistry A, 2003, 107(31): 5998-6006
https://doi.org/10.1021/jp022614r
25 Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238-1244
https://doi.org/10.1016/j.chemosphere.2007.05.076 pmid: 17628631
26 Cooper W J, Cramer C J, Martin N H, Mezyk S P, O’Shea K E, von Sonntag C. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chemical Reviews, 2009, 109(3): 1302-1345
https://doi.org/10.1021/cr078024c pmid: 19166337
27 Flyunt R, Schuchmann M N, von Sonntag C. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion, CO2-·, in aqueous solution. Chemistry (Weinheim an der Bergstrasse, Germany), 2001, 7(4): 796-799
https://doi.org/10.1002/1521-3765(20010216)7:4<796::AID-CHEM796>3.0.CO;2-J pmid: 11288870
28 Morkovinik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055-1075
https://doi.org/10.1070/RC1979v048n11ABEH002429
29 Buxton G V, Bydder M, Salmon G A. The reactivity of chlorine atoms in aqueous solution, Part II. The reactivity of chlorine atoms in aqueous solution II: The equilibrium SO4-· + Cl- ↔SO42- + Cl•. Physical Chemistry Chemical Physics, 1999, 1(2): 269-273
https://doi.org/10.1039/a807808d
30 Regino C A, Richardson D E. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 2007, 360(14): 3971-3977
https://doi.org/10.1016/j.ica.2007.05.020
31 Draganić Z D, Negrón-Mendoza A, Sehested K, Vujošević S I, Navarro-Gonzáles R, Albarrán-SanchezM G, Draganić I G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1991, 38(3): 317-321
https://doi.org/10.1016/1359-0197(91)90100-G
32 Padmaja S, Neta P, Huie R E. Rate constants for some reactions of inorganic radicals with inorganic ions. Temperature and solvent dependence. International Journal of Chemical Kinetics, 1993, 25(6): 445-455
https://doi.org/10.1002/kin.550250604
33 Neta P, Grodkowsk J, Ross A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1996, 25(3): 709-1050
https://doi.org/10.1063/1.555978
34 McCormick M L, Adriaens P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology, 2004, 38(4): 1045-1053
https://doi.org/10.1021/es030487m pmid: 14998017
35 McCormick M L, Bouwer E J, Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environmental Science & Technology, 2002, 36(3): 403-410
https://doi.org/10.1021/es010923+ pmid: 11871555
[1] Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(2): 6-.
[2] Qishi LUO. Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate[J]. Front Envir Sci Eng, 2014, 8(2): 188-194.
[3] Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN. A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells[J]. Front Envir Sci Eng, 2013, 7(3): 388-394.
[4] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[5] Yuchi LEE, Shanglien LO, Jeff KUO, Chinghong HSIEH. Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions[J]. Front Envir Sci Eng, 2012, 6(1): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed