Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 867-878    https://doi.org/10.1007/s11783-015-0800-3
RESEARCH ARTICLE
Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron
Rongbing FU1,2,*(),Na MU1,Xiaopin GUO2,Zhen XU2,Dongsu BI1
1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2. Shanghai Academy of Environmental Sciences, Shanghai 200233, China
 Download: PDF(1913 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prepared sepiolite-supported nZVI with a reaction rate that was 5 times greater than that of the conventionally prepared nZVI because of its high surface area and reactivity. The degradation of BDE-209 occurred in a stepwise debromination manner, which followed pseudo-first-order kinetics. The removal efficiency of BDE-209 increased with increasing dosage of sepiolite-supported nZVI particles and decreasing pH, and the efficiency decreased with increasing initial BDE-209 concentrations. The presence of tetrahydrofuran (THF) as a cosolvent at certain volume fractions in water influenced the degradation rate of sepiolite-supported nZVI. Debromination pathways of BDE-209 with sepiolite-supported nZVI were proposed based on the identified reaction intermediates, which ranged from nona- to mono-brominated diphenylethers (BDEs) under acidic conditions and nona- to penta-BDEs under alkaline conditions. Adsorption on sepiolite-supported nZVI particles also played a role in the removal of BDE-209. Our findings indicate that the particles have potential applications in removing environmental pollutants, such as halogenated organic contaminants.

Keywords sepiolite-supported nanoscale zerovalent iron      decabromodiphenyl ether      debromination      adsorption      mechanism     
Corresponding Author(s): Rongbing FU   
Online First Date: 19 June 2015    Issue Date: 08 October 2015
 Cite this article:   
Na MU,Xiaopin GUO,Zhen XU, et al. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0800-3
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/867
Fig.1  SEM images of (a) nZVI, (c) sepiolite-supported nZVI, and (e) modified sepiolite; TEM images of (b) nZVI, (d) sepiolite-supported nZVI, and (f) modified sepiolite
Fig.2  XRD patterns of modified sepiolite, sepiolite-supported nZVI and nZVI
Fig.3  (a) XPS and EDS spectra of sepiolite-supported nZVI, (b) narrow scan of Fe 2p before reaction, (c) narrow scan of Fe 2p after reaction
Fig.4  (a) Comparison of BDE-209 reaction with nZVI, sepiolite, modified sepiolite, and sepiolite-supported nZVI; (c) effect of sepiolite-supported nZVI addition on the BDE-209 removal efficiency; (e) effect of the initial BDE-209 concentration on the removal efficiency; (b), (d), (f) correlation for ln(Ct/C0) and reaction time
Fig.5  (a) Effect of solvent conditions on the BDE-209 removal efficiency; (c) effect of the temperature on BDE-209 removal efficiency; (e) effect of the initial pH on BDE-209 removal efficiency; (b), (d), (f) correlation for ln(Ct/C0) and reaction time
reaction time/h residual/% adsorption/% degradation/%
0.5 88.75 7.45 3.80
2 68.35 18.95 12.70
6 31.70 23.05 45.25
12 13.15 23.60 63.25
24 5.40 22.90 71.70
Tab.1  Residual, degradation, and adsorption portions of BDE-209 using sepiolite-supported nZVI at different reaction times
Fig.6  Schematic of the interaction of BDE-209 with sepiolite-supported nZVI
Fig.7  GC/MS chromatograms of BDE-209 and degradation products formed at different reaction times in solution of (a) pH 10 and (b) pH 6; distribution percentage of congeners formed from BDE-209 debromination by sepiolite-supported nZVI in the solution of (c) pH 10 and (d) pH 6
1 Peng  X Z, Tang  C M, Yu  Y Y, Tan  J H, Huang  Q X, Wu  J P, Chen  S J, Mai  B X. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environment International, 2009, 35(2): 303–309
https://doi.org/10.1016/j.envint.2008.07.021
2 Shi  T, Chen  S J, Luo  X J, Zhang  X L, Tang  C M, Luo  Y, Ma  Y J, Wu  J P, Peng  X Z, Mai  B X. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Chemosphere, 2009, 74(7): 910–916
https://doi.org/10.1016/j.chemosphere.2008.10.047
3 Mariussen  E, Fjeld  E, Breivik  K, Steinnes  E, Borgen  A, Kjellberg  G, Schlabach  M. Elevated levels of polybrominated diphenyl ethers (PBDEs) in fish from Lake Mjøsa, Norway. Science of the Total Environment, 2008, 390(1): 132–141
https://doi.org/10.1016/j.scitotenv.2007.09.032
4 Johnson-Restrepo  B, Kannan  K, Rapaport  D P, Rodan  B D. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environmental Science & Technology, 2005, 39(14): 5177–5182
https://doi.org/10.1021/es050399x
5 Sjödin  A, Jones  R S, Focant  J F, Lapeza  C, Wang  R Y, McGahee  E E 3rd, Zhang  Y L, Turner  W E, Slazyk  B, Needham  L L, Patterson  D G. Retrospective time-trend study of polybrominated diphenyl ether and polybrominated and polychlorinated biphenyl levels in human serum from the United States. Environmental Health Perspectives, 2004, 112(6): 654–658
https://doi.org/10.1289/ehp.6826
6 Luo  X J, Liu  J, Luo  Y, Zhang  X L, Wu  J P, Lin  Z, Chen  S J, Mai  B X, Yang  Z Y. Polybrominated diphenyl ethers (PBDEs) in free-range domestic fowl from an e-waste recycling site in South China: levels, profile and human dietary exposure. Environment International, 2009, 35(2): 253–258
https://doi.org/10.1016/j.envint.2008.06.007
7 Luo  X J, Yu  M, Mai  B X, Chen  S J. Distribution and partition of polybrominated diphenyl ethers (PBDEs) in water of the Zhujiang River Estuary. Chinese Science Bulletin, 2008, 53(4): 493–500
https://doi.org/10.1007/s11434-008-0126-7
8 Luo  Q, Wong  M H, Cai  Z W. Determination of polybrominated diphenyl ethers in freshwater fishes from a river polluted by e-wastes. Talanta, 2007, 72(5): 1644–1649
https://doi.org/10.1016/j.talanta.2007.03.012
9 Darnerud  P O, Eriksen  G S, Jóhannesson  T, Larsen  P B, Viluksela  M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 2001, 109(Suppl 1): 49–68
https://doi.org/10.1289/ehp.01109s149
10 Behnisch  P A, Hosoe  K, Sakai  S. Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environment International, 2003, 29(6): 861–877
https://doi.org/10.1016/S0160-4120(03)00105-3
11 Keum  Y S, Li  Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 2005, 39(7): 2280–2286
https://doi.org/10.1021/es048846g
12 Vonderheide  A P, Mueller  K E, Meija  J, Welsh  G L. Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Science of the Total Environment, 2008, 400(1−3): 425–436
https://doi.org/10.1016/j.scitotenv.2008.05.003
13 Cai  Y L, Liang  B, Fang  Z Q, Xie  Y Y, Tsang  E P. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor. Frontiers of Environmental Science & Engineering, doi: 10.1007/s11783-014-0764-8
14 Fang  Z Q, Qiu  X H, Chen  J H, Qiu  X Q. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials, 2011, 185(2−3): 958–969
https://doi.org/10.1016/j.jhazmat.2010.09.113
15 Wei  Y T, Wu  S C, Chou  C M, Che  C H, Tsai  S M, Lien  H L. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Research, 2010, 44(1): 131–140
https://doi.org/10.1016/j.watres.2009.09.012
16 Ghasemzadeh  G, Momenpour  M, Omidi  F, Hosseini  M R, Ahani  M, Barzegari  A. Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 2014, 8(4): 471–482
https://doi.org/10.1007/s11783-014-0654-0
17 Chen  X, Yao  X Y, Yu  C N, Su  X M, Shen  C F, Chen  C, Huang  R L, Xu  X H. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environmental Science and Pollution Research International, 2014, 21(7): 5201–5210
https://doi.org/10.1007/s11356-013-2089-8
18 Wang  C B, Zhang  W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156
https://doi.org/10.1021/es970039c
19 Fang  Z Q, Qiu  X H, Chen  J H, Qiu  X Q. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34–41
https://doi.org/10.1016/j.desal.2010.09.003
20 Shih  Y, Tai  Y. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 2010, 78(10): 1200–1206
https://doi.org/10.1016/j.chemosphere.2009.12.061
21 Zhuang  Y, Ahn  S, Luthy  R G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity. Environmental Science & Technology, 2010, 44(21): 8236–8242
https://doi.org/10.1021/es101601s
22 Xiao  J N, Gao  B Y, Yue  Q Y, Gao  Y, Li  Q. Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: Characterization, kinetics and mechanism. Chemical Engineering Journal, 2015, 262: 1226–1236
https://doi.org/10.1016/j.cej.2014.10.080
23 Yu  K, Gu  C, Boyd  S A, Liu  C, Sun  C, Teppen  B J, Li  H. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron. Environmental Science & Technology, 2012, 46(16): 8969–8975
https://doi.org/10.1021/es300516e
24 Fei  X N, Cao  L Y, Zhou  L F, Gu  Y C, Wang  X Y. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite. Water Science and Technology, 2012, 66(12): 2539–2545
https://doi.org/10.2166/wst.2012.478
25 Xiao  J N, Yue  Q Y, Gao  B Y, Sun  Y Y, Kong  J J, Gao  Y, Li  Q, Wang  Y. Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chemical Engineering Journal, 2014, 253: 63–72
https://doi.org/10.1016/j.cej.2014.05.030
26 Li  A, Tai  C, Zhao  Z S, Wang  Y W, Zhang  Q H, Jiang  G B, Hu  J T. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology, 2007, 41(19): 6841–6846
https://doi.org/10.1021/es070769c
27 Qiu  X H, Fang  Z Q, Liang  B, Gu  F L, Xu  Z C. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 2011, 193: 70–81
https://doi.org/10.1016/j.jhazmat.2011.07.024
28 Luo  S, Qin  P F, Shao  J H, Peng  L, Zeng  Q R, Gu  J D. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chemical Engineering Journal, 2013, 223: 1–7
https://doi.org/10.1016/j.cej.2012.10.088
29 Wang  W, Zhou  M H, Mao  Q, Yue  J J, Wang  X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catalysis Communications, 2010, 11(11): 937–941
https://doi.org/10.1016/j.catcom.2010.04.004
30 Bokare  A D, Chikate  R C, Rode  C V, Paknikar  K M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental, 2008, 79(3): 270–278
https://doi.org/10.1016/j.apcatb.2007.10.033
31 Lin  K D, Ding  J F, Huang  X W. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: kinetics, influencing factors, and pathways. Industrial & Engineering Chemistry Research, 2012, 51(25): 8378–8385
https://doi.org/10.1021/ie300992v
32 Choe  S, Lee  S H, Chang  Y Y, Hwang  K Y, Khim  J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere, 2001, 42(4): 367–372
https://doi.org/10.1016/S0045-6535(00)00147-8
33 Yang  G C C, Lee  H L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, 2005, 39(5): 884–894
https://doi.org/10.1016/j.watres.2004.11.030
34 Gerecke  A C, Hartmann  P C, Heeb  N V, Kohler  H P E, Giger  W, Schmid  P, Zennegg  M, Kohler  M. Anaerobic degradation of decabromodiphenyl ether. Environmental Science & Technology, 2005, 39(4): 1078–1083 那我上去
https://doi.org/10.1021/es048634j
[1] Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang. Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process[J]. Front. Environ. Sci. Eng., 2021, 15(6): 113-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[5] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[6] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[7] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[8] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[9] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[10] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[11] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[12] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[13] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[14] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[15] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed